R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(89,97,154,81,110,116,73,73,174,103,130,91,136,106,136,122,131,135,75,68,143,115,93,128,152,125,107,116,220,137,34,51,153,145,116,145,98,118,139,140,113,149,79,47,166,180,122,134,114,125,181,142,143,187,137,62,239,157,139,187,99,146,175,148,130,183,115,80,223,131,201,157) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 -0.6854 -0.4585 -0.3363 0.5746 s.e. 0.5746 0.1828 0.2399 0.5890 sigma^2 estimated as 943.3: log likelihood = -174.58, aic = 359.16 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 49 End = 72 Frequency = 1 [1] 93.98201 123.77934 140.57980 137.61873 111.96449 150.27021 79.40487 [8] 46.48837 165.73793 180.27804 122.10162 133.89100 93.91663 123.83995 [15] 140.60489 137.59573 111.94837 150.28337 79.41097 46.48358 165.73400 [22] 180.28088 122.10309 133.89002 $se Time Series: Start = 49 End = 72 Frequency = 1 [1] 30.71291 30.90082 33.05883 33.06656 33.80362 33.80782 33.90861 33.91018 [9] 33.94791 33.94798 33.95288 33.95307 46.02795 46.15387 47.65701 47.66290 [17] 48.18925 48.19219 48.26444 48.26561 48.29275 48.29280 48.29631 48.29645 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 49 End = 72 Frequency = 1 [1] 33.784701 63.213736 75.784504 72.808267 45.709402 84.006879 [7] 12.943981 -19.975577 99.200026 113.739989 55.553970 67.342996 [13] 3.701852 33.378354 47.197137 44.176453 17.497433 55.826676 [19] -15.187339 -48.117016 71.080210 85.626995 27.442315 39.228981 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 49 End = 72 Frequency = 1 [1] 154.1793 184.3449 205.3751 202.4292 178.2196 216.5335 145.8658 112.9523 [9] 232.2758 246.8161 188.6493 200.4390 184.1314 214.3015 234.0126 231.0150 [17] 206.3993 244.7401 174.0093 141.0842 260.3878 274.9348 216.7639 228.5511 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 89.00000 97.00000 154.00000 81.00000 110.00000 116.00000 73.00000 [8] 73.00000 174.00000 103.00000 130.00000 91.00000 136.00000 106.00000 [15] 136.00000 122.00000 131.00000 135.00000 75.00000 68.00000 143.00000 [22] 115.00000 93.00000 128.00000 152.00000 125.00000 107.00000 116.00000 [29] 220.00000 137.00000 34.00000 51.00000 153.00000 145.00000 116.00000 [36] 145.00000 98.00000 118.00000 139.00000 140.00000 113.00000 149.00000 [43] 79.00000 47.00000 166.00000 180.00000 122.00000 134.00000 93.98201 [50] 123.77934 140.57980 137.61873 111.96449 150.27021 79.40487 46.48837 [57] 165.73793 180.27804 122.10162 133.89100 93.91663 123.83995 140.60489 [64] 137.59573 111.94837 150.28337 79.41097 46.48358 165.73400 180.28088 [71] 122.10309 133.89002 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 49 End = 72 Frequency = 1 [1] 0.3267957 0.2496444 0.2351606 0.2402766 0.3019137 0.2249802 0.4270345 [8] 0.7294335 0.2048289 0.1883090 0.2780707 0.2535874 0.4900937 0.3726897 [15] 0.3389428 0.3463981 0.4304596 0.3206755 0.6077806 1.0383368 0.2913871 [22] 0.2678753 0.3955372 0.3607173 > postscript(file="/var/www/html/rcomp/tmp/1h7201292868520.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2o8ic1292868520.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3vrxo1292868520.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4ysdb1292868520.tab") > > try(system("convert tmp/1h7201292868520.ps tmp/1h7201292868520.png",intern=TRUE)) character(0) > try(system("convert tmp/2o8ic1292868520.ps tmp/2o8ic1292868520.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.768 0.405 1.721