R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(3010,2910,3840,3580,3140,3550,3250,2820,2260,2060,2120,2210,2190,2180,2350,2440,2370,2440,2610,3040,3190,3120,3170,3600,3420,3650,4180,2960,2710,2950,3030,3770,4740,4450,5550,5580,5890,7480,10450,6360,6710,6200,4490,3480,2520,1920,2010,1950,2240,2370,2840,2700,2980,3290,3300,3000,2330,2190,1970,2170,2830,3190,3550,3240,3450,3570,3230,3260,2700),dim=c(1,69),dimnames=list(c('Garnalen'),1:69))
>  y <- array(NA,dim=c(1,69),dimnames=list(c('Garnalen'),1:69))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Garnalen M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1      3010  1  0  0  0  0  0  0  0  0   0   0
2      2910  0  1  0  0  0  0  0  0  0   0   0
3      3840  0  0  1  0  0  0  0  0  0   0   0
4      3580  0  0  0  1  0  0  0  0  0   0   0
5      3140  0  0  0  0  1  0  0  0  0   0   0
6      3550  0  0  0  0  0  1  0  0  0   0   0
7      3250  0  0  0  0  0  0  1  0  0   0   0
8      2820  0  0  0  0  0  0  0  1  0   0   0
9      2260  0  0  0  0  0  0  0  0  1   0   0
10     2060  0  0  0  0  0  0  0  0  0   1   0
11     2120  0  0  0  0  0  0  0  0  0   0   1
12     2210  0  0  0  0  0  0  0  0  0   0   0
13     2190  1  0  0  0  0  0  0  0  0   0   0
14     2180  0  1  0  0  0  0  0  0  0   0   0
15     2350  0  0  1  0  0  0  0  0  0   0   0
16     2440  0  0  0  1  0  0  0  0  0   0   0
17     2370  0  0  0  0  1  0  0  0  0   0   0
18     2440  0  0  0  0  0  1  0  0  0   0   0
19     2610  0  0  0  0  0  0  1  0  0   0   0
20     3040  0  0  0  0  0  0  0  1  0   0   0
21     3190  0  0  0  0  0  0  0  0  1   0   0
22     3120  0  0  0  0  0  0  0  0  0   1   0
23     3170  0  0  0  0  0  0  0  0  0   0   1
24     3600  0  0  0  0  0  0  0  0  0   0   0
25     3420  1  0  0  0  0  0  0  0  0   0   0
26     3650  0  1  0  0  0  0  0  0  0   0   0
27     4180  0  0  1  0  0  0  0  0  0   0   0
28     2960  0  0  0  1  0  0  0  0  0   0   0
29     2710  0  0  0  0  1  0  0  0  0   0   0
30     2950  0  0  0  0  0  1  0  0  0   0   0
31     3030  0  0  0  0  0  0  1  0  0   0   0
32     3770  0  0  0  0  0  0  0  1  0   0   0
33     4740  0  0  0  0  0  0  0  0  1   0   0
34     4450  0  0  0  0  0  0  0  0  0   1   0
35     5550  0  0  0  0  0  0  0  0  0   0   1
36     5580  0  0  0  0  0  0  0  0  0   0   0
37     5890  1  0  0  0  0  0  0  0  0   0   0
38     7480  0  1  0  0  0  0  0  0  0   0   0
39    10450  0  0  1  0  0  0  0  0  0   0   0
40     6360  0  0  0  1  0  0  0  0  0   0   0
41     6710  0  0  0  0  1  0  0  0  0   0   0
42     6200  0  0  0  0  0  1  0  0  0   0   0
43     4490  0  0  0  0  0  0  1  0  0   0   0
44     3480  0  0  0  0  0  0  0  1  0   0   0
45     2520  0  0  0  0  0  0  0  0  1   0   0
46     1920  0  0  0  0  0  0  0  0  0   1   0
47     2010  0  0  0  0  0  0  0  0  0   0   1
48     1950  0  0  0  0  0  0  0  0  0   0   0
49     2240  1  0  0  0  0  0  0  0  0   0   0
50     2370  0  1  0  0  0  0  0  0  0   0   0
51     2840  0  0  1  0  0  0  0  0  0   0   0
52     2700  0  0  0  1  0  0  0  0  0   0   0
53     2980  0  0  0  0  1  0  0  0  0   0   0
54     3290  0  0  0  0  0  1  0  0  0   0   0
55     3300  0  0  0  0  0  0  1  0  0   0   0
56     3000  0  0  0  0  0  0  0  1  0   0   0
57     2330  0  0  0  0  0  0  0  0  1   0   0
58     2190  0  0  0  0  0  0  0  0  0   1   0
59     1970  0  0  0  0  0  0  0  0  0   0   1
60     2170  0  0  0  0  0  0  0  0  0   0   0
61     2830  1  0  0  0  0  0  0  0  0   0   0
62     3190  0  1  0  0  0  0  0  0  0   0   0
63     3550  0  0  1  0  0  0  0  0  0   0   0
64     3240  0  0  0  1  0  0  0  0  0   0   0
65     3450  0  0  0  0  1  0  0  0  0   0   0
66     3570  0  0  0  0  0  1  0  0  0   0   0
67     3230  0  0  0  0  0  0  1  0  0   0   0
68     3260  0  0  0  0  0  0  0  1  0   0   0
69     2700  0  0  0  0  0  0  0  0  1   0   0
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)           M1           M2           M3           M4           M5  
     3102.0        161.3        528.0       1433.0        444.7        458.0  
         M6           M7           M8           M9          M10          M11  
      564.7        216.3        126.3       -145.3       -354.0       -138.0  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-2185.0  -844.0  -376.7   156.7  5915.0 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3102.0      686.9   4.516 3.22e-05 ***
M1             161.3      930.1   0.173    0.863    
M2             528.0      930.1   0.568    0.572    
M3            1433.0      930.1   1.541    0.129    
M4             444.7      930.1   0.478    0.634    
M5             458.0      930.1   0.492    0.624    
M6             564.7      930.1   0.607    0.546    
M7             216.3      930.1   0.233    0.817    
M8             126.3      930.1   0.136    0.892    
M9            -145.3      930.1  -0.156    0.876    
M10           -354.0      971.4  -0.364    0.717    
M11           -138.0      971.4  -0.142    0.888    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 1536 on 57 degrees of freedom
Multiple R-squared: 0.09297,	Adjusted R-squared: -0.08207 
F-statistic: 0.5311 on 11 and 57 DF,  p-value: 0.874 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
              [,1]         [,2]         [,3]
 [1,] 1.061702e-01 2.123403e-01 8.938298e-01
 [2,] 6.721709e-02 1.344342e-01 9.327829e-01
 [3,] 3.357158e-02 6.714315e-02 9.664284e-01
 [4,] 2.182096e-02 4.364193e-02 9.781790e-01
 [5,] 9.950736e-03 1.990147e-02 9.900493e-01
 [6,] 3.669109e-03 7.338218e-03 9.963309e-01
 [7,] 1.952735e-03 3.905469e-03 9.980473e-01
 [8,] 1.169762e-03 2.339524e-03 9.988302e-01
 [9,] 6.831371e-04 1.366274e-03 9.993169e-01
[10,] 5.677253e-04 1.135451e-03 9.994323e-01
[11,] 2.952008e-04 5.904016e-04 9.997048e-01
[12,] 2.082011e-04 4.164022e-04 9.997918e-01
[13,] 1.497833e-04 2.995665e-04 9.998502e-01
[14,] 5.599967e-05 1.119993e-04 9.999440e-01
[15,] 2.172789e-05 4.345578e-05 9.999783e-01
[16,] 7.876892e-06 1.575378e-05 9.999921e-01
[17,] 2.547709e-06 5.095417e-06 9.999975e-01
[18,] 1.261467e-06 2.522935e-06 9.999987e-01
[19,] 5.641432e-06 1.128286e-05 9.999944e-01
[20,] 1.330160e-05 2.660321e-05 9.999867e-01
[21,] 1.909662e-04 3.819323e-04 9.998090e-01
[22,] 9.834911e-04 1.966982e-03 9.990165e-01
[23,] 5.535587e-03 1.107117e-02 9.944644e-01
[24,] 9.894544e-02 1.978909e-01 9.010546e-01
[25,] 9.704041e-01 5.919180e-02 2.959590e-02
[26,] 9.959526e-01 8.094813e-03 4.047407e-03
[27,] 9.999547e-01 9.067000e-05 4.533500e-05
[28,] 1.000000e+00 6.160151e-08 3.080075e-08
[29,] 1.000000e+00 6.212186e-09 3.106093e-09
[30,] 1.000000e+00 2.653009e-08 1.326505e-08
[31,] 9.999999e-01 1.624497e-07 8.122484e-08
[32,] 9.999996e-01 7.826094e-07 3.913047e-07
[33,] 9.999979e-01 4.162757e-06 2.081379e-06
[34,] 9.999905e-01 1.905399e-05 9.526993e-06
[35,] 9.999744e-01 5.121898e-05 2.560949e-05
[36,] 9.999684e-01 6.312706e-05 3.156353e-05
[37,] 9.999581e-01 8.381920e-05 4.190960e-05
[38,] 9.999007e-01 1.985744e-04 9.928721e-05
[39,] 9.997307e-01 5.386956e-04 2.693478e-04
[40,] 9.983203e-01 3.359367e-03 1.679683e-03
> postscript(file="/var/www/html/rcomp/tmp/1x34i1292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2x34i1292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3x34i1292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4qcl31292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5qcl31292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 69 
Frequency = 1 
          1           2           3           4           5           6 
 -253.33333  -720.00000  -695.00000    33.33333  -420.00000  -116.66667 
          7           8           9          10          11          12 
  -68.33333  -408.33333  -696.66667  -688.00000  -844.00000  -892.00000 
         13          14          15          16          17          18 
-1073.33333 -1450.00000 -2185.00000 -1106.66667 -1190.00000 -1226.66667 
         19          20          21          22          23          24 
 -708.33333  -188.33333   233.33333   372.00000   206.00000   498.00000 
         25          26          27          28          29          30 
  156.66667    20.00000  -355.00000  -586.66667  -850.00000  -716.66667 
         31          32          33          34          35          36 
 -288.33333   541.66667  1783.33333  1702.00000  2586.00000  2478.00000 
         37          38          39          40          41          42 
 2626.66667  3850.00000  5915.00000  2813.33333  3150.00000  2533.33333 
         43          44          45          46          47          48 
 1171.66667   251.66667  -436.66667  -828.00000  -954.00000 -1152.00000 
         49          50          51          52          53          54 
-1023.33333 -1260.00000 -1695.00000  -846.66667  -580.00000  -376.66667 
         55          56          57          58          59          60 
  -18.33333  -228.33333  -626.66667  -558.00000  -994.00000  -932.00000 
         61          62          63          64          65          66 
 -433.33333  -440.00000  -985.00000  -306.66667  -110.00000   -96.66667 
         67          68          69 
  -88.33333    31.66667  -256.66667 
> postscript(file="/var/www/html/rcomp/tmp/6qcl31292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 69 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0          -253.33333          NA
 1          -720.00000  -253.33333
 2          -695.00000  -720.00000
 3            33.33333  -695.00000
 4          -420.00000    33.33333
 5          -116.66667  -420.00000
 6           -68.33333  -116.66667
 7          -408.33333   -68.33333
 8          -696.66667  -408.33333
 9          -688.00000  -696.66667
10          -844.00000  -688.00000
11          -892.00000  -844.00000
12         -1073.33333  -892.00000
13         -1450.00000 -1073.33333
14         -2185.00000 -1450.00000
15         -1106.66667 -2185.00000
16         -1190.00000 -1106.66667
17         -1226.66667 -1190.00000
18          -708.33333 -1226.66667
19          -188.33333  -708.33333
20           233.33333  -188.33333
21           372.00000   233.33333
22           206.00000   372.00000
23           498.00000   206.00000
24           156.66667   498.00000
25            20.00000   156.66667
26          -355.00000    20.00000
27          -586.66667  -355.00000
28          -850.00000  -586.66667
29          -716.66667  -850.00000
30          -288.33333  -716.66667
31           541.66667  -288.33333
32          1783.33333   541.66667
33          1702.00000  1783.33333
34          2586.00000  1702.00000
35          2478.00000  2586.00000
36          2626.66667  2478.00000
37          3850.00000  2626.66667
38          5915.00000  3850.00000
39          2813.33333  5915.00000
40          3150.00000  2813.33333
41          2533.33333  3150.00000
42          1171.66667  2533.33333
43           251.66667  1171.66667
44          -436.66667   251.66667
45          -828.00000  -436.66667
46          -954.00000  -828.00000
47         -1152.00000  -954.00000
48         -1023.33333 -1152.00000
49         -1260.00000 -1023.33333
50         -1695.00000 -1260.00000
51          -846.66667 -1695.00000
52          -580.00000  -846.66667
53          -376.66667  -580.00000
54           -18.33333  -376.66667
55          -228.33333   -18.33333
56          -626.66667  -228.33333
57          -558.00000  -626.66667
58          -994.00000  -558.00000
59          -932.00000  -994.00000
60          -433.33333  -932.00000
61          -440.00000  -433.33333
62          -985.00000  -440.00000
63          -306.66667  -985.00000
64          -110.00000  -306.66667
65           -96.66667  -110.00000
66           -88.33333   -96.66667
67            31.66667   -88.33333
68          -256.66667    31.66667
69                  NA  -256.66667
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]          -720.00000  -253.33333
 [2,]          -695.00000  -720.00000
 [3,]            33.33333  -695.00000
 [4,]          -420.00000    33.33333
 [5,]          -116.66667  -420.00000
 [6,]           -68.33333  -116.66667
 [7,]          -408.33333   -68.33333
 [8,]          -696.66667  -408.33333
 [9,]          -688.00000  -696.66667
[10,]          -844.00000  -688.00000
[11,]          -892.00000  -844.00000
[12,]         -1073.33333  -892.00000
[13,]         -1450.00000 -1073.33333
[14,]         -2185.00000 -1450.00000
[15,]         -1106.66667 -2185.00000
[16,]         -1190.00000 -1106.66667
[17,]         -1226.66667 -1190.00000
[18,]          -708.33333 -1226.66667
[19,]          -188.33333  -708.33333
[20,]           233.33333  -188.33333
[21,]           372.00000   233.33333
[22,]           206.00000   372.00000
[23,]           498.00000   206.00000
[24,]           156.66667   498.00000
[25,]            20.00000   156.66667
[26,]          -355.00000    20.00000
[27,]          -586.66667  -355.00000
[28,]          -850.00000  -586.66667
[29,]          -716.66667  -850.00000
[30,]          -288.33333  -716.66667
[31,]           541.66667  -288.33333
[32,]          1783.33333   541.66667
[33,]          1702.00000  1783.33333
[34,]          2586.00000  1702.00000
[35,]          2478.00000  2586.00000
[36,]          2626.66667  2478.00000
[37,]          3850.00000  2626.66667
[38,]          5915.00000  3850.00000
[39,]          2813.33333  5915.00000
[40,]          3150.00000  2813.33333
[41,]          2533.33333  3150.00000
[42,]          1171.66667  2533.33333
[43,]           251.66667  1171.66667
[44,]          -436.66667   251.66667
[45,]          -828.00000  -436.66667
[46,]          -954.00000  -828.00000
[47,]         -1152.00000  -954.00000
[48,]         -1023.33333 -1152.00000
[49,]         -1260.00000 -1023.33333
[50,]         -1695.00000 -1260.00000
[51,]          -846.66667 -1695.00000
[52,]          -580.00000  -846.66667
[53,]          -376.66667  -580.00000
[54,]           -18.33333  -376.66667
[55,]          -228.33333   -18.33333
[56,]          -626.66667  -228.33333
[57,]          -558.00000  -626.66667
[58,]          -994.00000  -558.00000
[59,]          -932.00000  -994.00000
[60,]          -433.33333  -932.00000
[61,]          -440.00000  -433.33333
[62,]          -985.00000  -440.00000
[63,]          -306.66667  -985.00000
[64,]          -110.00000  -306.66667
[65,]           -96.66667  -110.00000
[66,]           -88.33333   -96.66667
[67,]            31.66667   -88.33333
[68,]          -256.66667    31.66667
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1           -720.00000  -253.33333
2           -695.00000  -720.00000
3             33.33333  -695.00000
4           -420.00000    33.33333
5           -116.66667  -420.00000
6            -68.33333  -116.66667
7           -408.33333   -68.33333
8           -696.66667  -408.33333
9           -688.00000  -696.66667
10          -844.00000  -688.00000
11          -892.00000  -844.00000
12         -1073.33333  -892.00000
13         -1450.00000 -1073.33333
14         -2185.00000 -1450.00000
15         -1106.66667 -2185.00000
16         -1190.00000 -1106.66667
17         -1226.66667 -1190.00000
18          -708.33333 -1226.66667
19          -188.33333  -708.33333
20           233.33333  -188.33333
21           372.00000   233.33333
22           206.00000   372.00000
23           498.00000   206.00000
24           156.66667   498.00000
25            20.00000   156.66667
26          -355.00000    20.00000
27          -586.66667  -355.00000
28          -850.00000  -586.66667
29          -716.66667  -850.00000
30          -288.33333  -716.66667
31           541.66667  -288.33333
32          1783.33333   541.66667
33          1702.00000  1783.33333
34          2586.00000  1702.00000
35          2478.00000  2586.00000
36          2626.66667  2478.00000
37          3850.00000  2626.66667
38          5915.00000  3850.00000
39          2813.33333  5915.00000
40          3150.00000  2813.33333
41          2533.33333  3150.00000
42          1171.66667  2533.33333
43           251.66667  1171.66667
44          -436.66667   251.66667
45          -828.00000  -436.66667
46          -954.00000  -828.00000
47         -1152.00000  -954.00000
48         -1023.33333 -1152.00000
49         -1260.00000 -1023.33333
50         -1695.00000 -1260.00000
51          -846.66667 -1695.00000
52          -580.00000  -846.66667
53          -376.66667  -580.00000
54           -18.33333  -376.66667
55          -228.33333   -18.33333
56          -626.66667  -228.33333
57          -558.00000  -626.66667
58          -994.00000  -558.00000
59          -932.00000  -994.00000
60          -433.33333  -932.00000
61          -440.00000  -433.33333
62          -985.00000  -440.00000
63          -306.66667  -985.00000
64          -110.00000  -306.66667
65           -96.66667  -110.00000
66           -88.33333   -96.66667
67            31.66667   -88.33333
68          -256.66667    31.66667
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7i32o1292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8bdk91292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9bdk91292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10mmju1292945330.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11uqoo1292945330.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12iwh21292945330.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/137xww1292945330.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14axc21292945330.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/153pc51292945330.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16hz9e1292945330.tab") 
+ }
> 
> try(system("convert tmp/1x34i1292945330.ps tmp/1x34i1292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/2x34i1292945330.ps tmp/2x34i1292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/3x34i1292945330.ps tmp/3x34i1292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/4qcl31292945330.ps tmp/4qcl31292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/5qcl31292945330.ps tmp/5qcl31292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/6qcl31292945330.ps tmp/6qcl31292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/7i32o1292945330.ps tmp/7i32o1292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/8bdk91292945330.ps tmp/8bdk91292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/9bdk91292945330.ps tmp/9bdk91292945330.png",intern=TRUE))
character(0)
> try(system("convert tmp/10mmju1292945330.ps tmp/10mmju1292945330.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.614   1.627   9.638