R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(631923,654294,671833,586840,600969,625568,558110,630577,628654,603184,656255,600730,670326,678423,641502,625311,628177,589767,582471,636248,599885,621694,637406,595994,696308,674201,648861,649605,672392,598396,613177,638104,615632,634465,638686,604243,706669,677185,644328,644825,605707,600136,612166,599659,634210,618234,613576,627200,668973,651479,619661,644260,579936,601752,595376,588902,634341,594305,606200,610926,633685,639696,659451,593248,606677,599434,569578,629873,613438,604172,658328,612633,707372,739770,777535,685030,730234,714154,630872,719492,677023,679272,718317,645672) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '2' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '0.5' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 sar1 sar2 sma1 -0.3395 0.0037 0.6271 -0.757 -0.0002 -0.0129 -0.3272 -0.9996 s.e. NaN NaN NaN NaN 0.1250 0.1686 0.1600 0.2861 sigma^2 estimated as 67.63: log likelihood = -223.89, aic = 465.77 Warning message: In sqrt(diag(x$var.coef)) : NaNs produced > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 73 End = 84 Frequency = 1 [1] 820.9484 830.7466 812.7190 792.4963 804.4130 778.9191 774.4495 801.8660 [9] 790.0217 794.8500 807.7417 786.6539 $se Time Series: Start = 73 End = 84 Frequency = 1 [1] 9.143026 9.179775 9.525456 11.775515 11.794764 12.465004 13.482922 [8] 13.482551 14.274121 14.767944 14.800497 15.544506 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 73 End = 84 Frequency = 1 [1] 803.0281 812.7542 794.0491 769.4163 781.2953 754.4877 748.0230 775.4402 [9] 762.0444 765.9048 778.7327 756.1867 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 73 End = 84 Frequency = 1 [1] 838.8687 848.7390 831.3888 815.5763 827.5308 803.3505 800.8760 828.2918 [9] 817.9990 823.7952 836.7507 817.1212 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 631923.0 654294.0 671833.0 586840.0 600969.0 625568.0 558110.0 630577.0 [9] 628654.0 603184.0 656255.0 600730.0 670326.0 678423.0 641502.0 625311.0 [17] 628177.0 589767.0 582471.0 636248.0 599885.0 621694.0 637406.0 595994.0 [25] 696308.0 674201.0 648861.0 649605.0 672392.0 598396.0 613177.0 638104.0 [33] 615632.0 634465.0 638686.0 604243.0 706669.0 677185.0 644328.0 644825.0 [41] 605707.0 600136.0 612166.0 599659.0 634210.0 618234.0 613576.0 627200.0 [49] 668973.0 651479.0 619661.0 644260.0 579936.0 601752.0 595376.0 588902.0 [57] 634341.0 594305.0 606200.0 610926.0 633685.0 639696.0 659451.0 593248.0 [65] 606677.0 599434.0 569578.0 629873.0 613438.0 604172.0 658328.0 612633.0 [73] 673956.3 690139.9 660512.1 628050.4 647080.3 606714.9 599772.0 642989.2 [81] 624134.3 631786.5 652446.6 618824.4 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 73 End = 84 Frequency = 1 [1] 0.02251741 0.02233938 0.02371020 0.03015026 0.02974653 0.03250785 [7] 0.03541344 0.03418205 0.03677587 0.03783566 0.03730467 0.04028589 > postscript(file="/var/www/rcomp/tmp/1bmo61292957521.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/27emf1292957521.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/376jt1292957521.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/4s6hh1292957521.tab") > > try(system("convert tmp/1bmo61292957521.ps tmp/1bmo61292957521.png",intern=TRUE)) character(0) > try(system("convert tmp/27emf1292957521.ps tmp/27emf1292957521.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.78 1.05 3.82