R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(9.769,9.321,9.939,9.336,10.195,9.464,10.010,10.213,9.563,9.890,9.305,9.391,9.928,8.686,9.843,9.627,10.074,9.503,10.119,10.000,9.313,9.866,9.172,9.241,9.659,8.904,9.755,9.080,9.435,8.971,10.063,9.793,9.454,9.759,8.820,9.403,9.676,8.642,9.402,9.610,9.294,9.448,10.319,9.548,9.801,9.596,8.923,9.746,9.829,9.125,9.782,9.441,9.162,9.915,10.444,10.209,9.985,9.842,9.429,10.132,9.849,9.172,10.313,9.819,9.955,10.048,10.082,10.541,10.208,10.233,9.439,9.963,10.158,9.225,10.474,9.757,10.490,10.281,10.444,10.640,10.695,10.786,9.832,9.747,10.411,9.511,10.402,9.701,10.540,10.112,10.915,11.183,10.384,10.834,9.886,10.216) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '1' > par6 = '1' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '-0.8' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 sar1 sma1 0.9937 -0.8286 0.4595 -1.0000 s.e. 0.0253 0.0555 0.1503 0.1611 sigma^2 estimated as 1.145e-05: log likelihood = 300.71, aic = -591.42 Warning messages: 1: In log(s2) : NaNs produced 2: In log(s2) : NaNs produced > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 85 End = 96 Frequency = 1 [1] 0.1542143 0.1661313 0.1517885 0.1591663 0.1524144 0.1550242 0.1505491 [8] 0.1497677 0.1514999 0.1500045 0.1606106 0.1588085 $se Time Series: Start = 85 End = 96 Frequency = 1 [1] 0.003563909 0.003607833 0.003650152 0.003690927 0.003730215 0.003768070 [7] 0.003804539 0.003839669 0.003873500 0.003906073 0.003937423 0.003967585 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 85 End = 96 Frequency = 1 [1] 0.1472290 0.1590599 0.1446342 0.1519321 0.1451032 0.1476388 0.1430922 [8] 0.1422420 0.1439078 0.1423486 0.1528933 0.1510320 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 85 End = 96 Frequency = 1 [1] 0.1611996 0.1732026 0.1589428 0.1664005 0.1597256 0.1624096 0.1580060 [8] 0.1572935 0.1590919 0.1576604 0.1683280 0.1665849 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 9.769000 9.321000 9.939000 9.336000 10.195000 9.464000 10.010000 [8] 10.213000 9.563000 9.890000 9.305000 9.391000 9.928000 8.686000 [15] 9.843000 9.627000 10.074000 9.503000 10.119000 10.000000 9.313000 [22] 9.866000 9.172000 9.241000 9.659000 8.904000 9.755000 9.080000 [29] 9.435000 8.971000 10.063000 9.793000 9.454000 9.759000 8.820000 [36] 9.403000 9.676000 8.642000 9.402000 9.610000 9.294000 9.448000 [43] 10.319000 9.548000 9.801000 9.596000 8.923000 9.746000 9.829000 [50] 9.125000 9.782000 9.441000 9.162000 9.915000 10.444000 10.209000 [57] 9.985000 9.842000 9.429000 10.132000 9.849000 9.172000 10.313000 [64] 9.819000 9.955000 10.048000 10.082000 10.541000 10.208000 10.233000 [71] 9.439000 9.963000 10.158000 9.225000 10.474000 9.757000 10.490000 [78] 10.281000 10.444000 10.640000 10.695000 10.786000 9.832000 9.747000 [85] 10.347708 9.428350 10.554835 9.946861 10.500682 10.280180 10.663565 [92] 10.733149 10.579977 10.711981 9.835175 9.974887 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 85 End = 96 Frequency = 1 [1] 0.03043557 0.02850862 0.03173910 0.03054521 0.03233406 0.03209983 [7] 0.03344878 0.03396267 0.03386470 0.03452782 0.03239154 0.03304597 > postscript(file="/var/www/rcomp/tmp/1l2us1293031741.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2rm941293031741.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3g56y1293031741.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/42n5m1293031741.tab") > > try(system("convert tmp/1l2us1293031741.ps tmp/1l2us1293031741.png",intern=TRUE)) character(0) > try(system("convert tmp/2rm941293031741.ps tmp/2rm941293031741.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.200 0.470 1.641