R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(320,324,343,295,301,367,196,182,342,361,333,330,345,323,365,323,316,358,235,169,430,409,407,341,326,374,364,349,300,385,304,196,443,414,325,388,356,386,444,387,327,448,225,182,460,411,342,361,377,331,428,340,352,461,221,198,422,329,320,375,364,351,380,319,322,386,221,187,343,342,365,313,356,337,389,326,343,357,220,218,391,425,332,298,360,336,325,393,301,426,265,210,429,440,357,431,442,422,544,420,396,482,261,211,448,468,464,425) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sma1 -0.1519 0.2734 0.4495 0.2361 -1.0000 s.e. 0.1970 0.1048 0.1058 0.2051 0.1706 sigma^2 estimated as 854: log likelihood = -415.49, aic = 842.97 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 97 End = 108 Frequency = 1 [1] 381.2712 370.2816 423.9163 354.9797 340.8945 418.2759 243.6597 205.1849 [9] 415.5782 395.2896 353.1638 356.5675 $se Time Series: Start = 97 End = 108 Frequency = 1 [1] 31.04795 31.15569 32.17466 34.82588 34.85006 35.55459 35.94000 35.97333 [9] 36.23256 36.26712 36.29011 36.35828 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 320.4172 309.2164 360.8540 286.7210 272.5884 348.5889 173.2173 134.6772 [9] 344.5624 324.2060 282.0352 285.3052 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 97 End = 108 Frequency = 1 [1] 442.1251 431.3467 486.9786 423.2385 409.2006 487.9629 314.1021 275.6927 [9] 486.5940 466.3731 424.2925 427.8297 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 320.0000 324.0000 343.0000 295.0000 301.0000 367.0000 196.0000 182.0000 [9] 342.0000 361.0000 333.0000 330.0000 345.0000 323.0000 365.0000 323.0000 [17] 316.0000 358.0000 235.0000 169.0000 430.0000 409.0000 407.0000 341.0000 [25] 326.0000 374.0000 364.0000 349.0000 300.0000 385.0000 304.0000 196.0000 [33] 443.0000 414.0000 325.0000 388.0000 356.0000 386.0000 444.0000 387.0000 [41] 327.0000 448.0000 225.0000 182.0000 460.0000 411.0000 342.0000 361.0000 [49] 377.0000 331.0000 428.0000 340.0000 352.0000 461.0000 221.0000 198.0000 [57] 422.0000 329.0000 320.0000 375.0000 364.0000 351.0000 380.0000 319.0000 [65] 322.0000 386.0000 221.0000 187.0000 343.0000 342.0000 365.0000 313.0000 [73] 356.0000 337.0000 389.0000 326.0000 343.0000 357.0000 220.0000 218.0000 [81] 391.0000 425.0000 332.0000 298.0000 360.0000 336.0000 325.0000 393.0000 [89] 301.0000 426.0000 265.0000 210.0000 429.0000 440.0000 357.0000 431.0000 [97] 381.2712 370.2816 423.9163 354.9797 340.8945 418.2759 243.6597 205.1849 [105] 415.5782 395.2896 353.1638 356.5675 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 97 End = 108 Frequency = 1 [1] 0.08143272 0.08414054 0.07589862 0.09810668 0.10223121 0.08500272 [7] 0.14750080 0.17532148 0.08718590 0.09174823 0.10275715 0.10196746 > postscript(file="/var/www/html/rcomp/tmp/1gk891293034476.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2uuo01293034476.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/31v3c1293034476.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/44dki1293034476.tab") > > try(system("convert tmp/1gk891293034476.ps tmp/1gk891293034476.png",intern=TRUE)) character(0) > try(system("convert tmp/2uuo01293034476.ps tmp/2uuo01293034476.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.067 0.347 2.237