R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(13 + ,11 + ,23 + ,1 + ,6 + ,12 + ,22 + ,24 + ,2 + ,5 + ,26 + ,23 + ,24 + ,2 + ,20 + ,16 + ,21 + ,21 + ,2 + ,12 + ,18 + ,19 + ,21 + ,2 + ,11 + ,12 + ,12 + ,19 + ,2 + ,12 + ,18 + ,24 + ,12 + ,1 + ,11 + ,20 + ,21 + ,21 + ,1 + ,9 + ,18 + ,21 + ,25 + ,2 + ,13 + ,24 + ,26 + ,27 + ,2 + ,9 + ,17 + ,18 + ,21 + ,1 + ,14 + ,19 + ,21 + ,27 + ,1 + ,12 + ,12 + ,22 + ,20 + ,1 + ,18 + ,25 + ,26 + ,16 + ,2 + ,9 + ,23 + ,20 + ,26 + ,1 + ,15 + ,22 + ,20 + ,24 + ,2 + ,12 + ,23 + ,26 + ,25 + ,2 + ,12 + ,16 + ,27 + ,25 + ,1 + ,12 + ,16 + ,27 + ,27 + ,1 + ,15 + ,15 + ,16 + ,23 + ,2 + ,11 + ,24 + ,26 + ,22 + ,1 + ,13 + ,18 + ,20 + ,10 + ,1 + ,10 + ,23 + ,25 + ,25 + ,2 + ,17 + ,18 + ,16 + ,18 + ,1 + ,13 + ,19 + ,20 + ,21 + ,1 + ,17 + ,17 + ,20 + ,20 + ,1 + ,15 + ,22 + ,24 + ,18 + ,1 + ,13 + ,22 + ,24 + ,25 + ,1 + ,17 + ,8 + ,22 + ,28 + ,1 + ,21 + ,12 + ,18 + ,27 + ,1 + ,12 + ,22 + ,21 + ,20 + ,2 + ,12 + ,16 + ,17 + ,20 + ,1 + ,15 + ,12 + ,15 + ,20 + ,2 + ,8 + ,28 + ,28 + ,27 + ,2 + ,15 + ,15 + ,23 + ,23 + ,1 + ,16 + ,17 + ,19 + ,23 + ,2 + ,9 + ,16 + ,15 + ,22 + ,2 + ,13 + ,24 + ,26 + ,26 + ,1 + ,11 + ,27 + ,20 + ,21 + ,1 + ,9 + ,10 + ,11 + ,17 + ,1 + ,15 + ,20 + ,17 + ,27 + ,2 + ,9 + ,17 + ,16 + ,16 + ,2 + ,15 + ,20 + ,21 + ,26 + ,1 + ,14 + ,16 + ,18 + ,17 + ,1 + ,8 + ,16 + ,17 + ,24 + ,2 + ,11 + ,22 + ,21 + ,23 + ,2 + ,14 + ,19 + ,18 + ,20 + ,1 + ,14 + ,11 + ,16 + ,10 + ,1 + ,12 + ,11 + ,13 + ,21 + ,1 + ,15 + ,28 + ,28 + ,25 + ,1 + ,11 + ,12 + ,25 + ,28 + ,1 + ,11 + ,22 + ,24 + ,25 + ,2 + ,9 + ,15 + ,15 + ,20 + ,2 + ,8 + ,19 + ,21 + ,20 + ,1 + ,13 + ,12 + ,11 + ,27 + ,1 + ,12 + ,18 + ,27 + ,26 + ,1 + ,24 + ,21 + ,23 + ,19 + ,2 + ,11 + ,21 + ,21 + ,26 + ,1 + ,11 + ,15 + ,16 + ,20 + ,2 + ,16 + ,12 + ,20 + ,22 + ,1 + ,12 + ,25 + ,21 + ,19 + ,2 + ,18 + ,12 + ,10 + ,23 + ,2 + ,12 + ,25 + ,18 + ,28 + ,2 + ,14 + ,17 + ,20 + ,22 + ,2 + ,16 + ,26 + ,21 + ,27 + ,2 + ,24 + ,24 + ,24 + ,14 + ,1 + ,13 + ,18 + ,26 + ,25 + ,1 + ,11 + ,20 + ,23 + ,22 + ,1 + ,14 + ,17 + ,22 + ,24 + ,1 + ,16 + ,11 + ,13 + ,23 + ,1 + ,12 + ,27 + ,27 + ,25 + ,1 + ,21 + ,14 + ,24 + ,28 + ,2 + ,11 + ,22 + ,19 + ,28 + ,1 + ,6 + ,19 + ,17 + ,16 + ,2 + ,9 + ,19 + ,16 + ,25 + ,1 + ,14 + ,18 + ,20 + ,21 + ,1 + ,16 + ,9 + ,8 + ,27 + ,1 + ,18 + ,22 + ,16 + ,21 + ,2 + ,9 + ,17 + ,17 + ,22 + ,1 + ,13 + ,23 + ,23 + ,26 + ,2 + ,17 + ,16 + ,18 + ,21 + ,1 + ,11 + ,23 + ,24 + ,24 + ,1 + ,16 + ,13 + ,17 + ,24 + ,1 + ,11 + ,21 + ,20 + ,23 + ,1 + ,11 + ,17 + ,22 + ,26 + ,2 + ,11 + ,15 + ,22 + ,21 + ,1 + ,20 + ,16 + ,20 + ,24 + ,1 + ,10 + ,19 + ,18 + ,23 + ,1 + ,12 + ,19 + ,21 + ,21 + ,2 + ,11 + ,16 + ,23 + ,20 + ,1 + ,14 + ,23 + ,28 + ,22 + ,1 + ,12 + ,19 + ,19 + ,26 + ,1 + ,12 + ,17 + ,22 + ,23 + ,1 + ,12 + ,20 + ,17 + ,23 + ,2 + ,10 + ,25 + ,25 + ,22 + ,2 + ,12 + ,22 + ,22 + ,25 + ,2 + ,10 + ,18 + ,21 + ,21 + ,2 + ,10 + ,16 + ,15 + ,21 + ,1 + ,13 + ,18 + ,20 + ,25 + ,1 + ,12 + ,15 + ,25 + ,26 + ,2 + ,13 + ,19 + ,21 + ,21 + ,1 + ,9 + ,23 + ,24 + ,24 + ,1 + ,14 + ,20 + ,23 + ,21 + ,2 + ,14 + ,24 + ,22 + ,23 + ,1 + ,12 + ,17 + ,14 + ,24 + ,1 + ,18 + ,20 + ,11 + ,24 + ,1 + ,17 + ,11 + ,22 + ,24 + ,1 + ,12 + ,20 + ,22 + ,25 + ,1 + ,15 + ,8 + ,6 + ,28 + ,1 + ,8 + ,22 + ,15 + ,18 + ,2 + ,8 + ,20 + ,26 + ,28 + ,1 + ,12 + ,23 + ,26 + ,22 + ,1 + ,10 + ,11 + ,20 + ,28 + ,1 + ,18 + ,22 + ,26 + ,22 + ,1 + ,15 + ,10 + ,15 + ,24 + ,1 + ,16 + ,19 + ,25 + ,27 + ,2 + ,11 + ,26 + ,22 + ,21 + ,2 + ,10 + ,22 + ,20 + ,26 + ,2 + ,7 + ,12 + ,18 + ,24 + ,1 + ,17 + ,13 + ,23 + ,25 + ,1 + ,7 + ,19 + ,22 + ,20 + ,2 + ,14 + ,19 + ,23 + ,21 + ,1 + ,12 + ,21 + ,17 + ,23 + ,1 + ,15 + ,11 + ,20 + ,23 + ,1 + ,13 + ,21 + ,21 + ,19 + ,2 + ,10 + ,25 + ,23 + ,22 + ,1 + ,16 + ,27 + ,25 + ,15 + ,2 + ,11 + ,21 + ,25 + ,24 + ,2 + ,7 + ,14 + ,21 + ,18 + ,2 + ,15 + ,16 + ,22 + ,18 + ,1 + ,18 + ,16 + ,18 + ,23 + ,1 + ,11 + ,19 + ,18 + ,17 + ,1 + ,13 + ,24 + ,18 + ,19 + ,2 + ,11 + ,18 + ,21 + ,21 + ,2 + ,13 + ,16 + ,21 + ,12 + ,2 + ,12 + ,20 + ,25 + ,25 + ,2 + ,11 + ,19 + ,24 + ,25 + ,1 + ,11 + ,20 + ,24 + ,24 + ,1 + ,13 + ,27 + ,28 + ,24 + ,2 + ,8 + ,24 + ,24 + ,24 + ,2 + ,12 + ,23 + ,22 + ,22 + ,2 + ,9 + ,20 + ,22 + ,22 + ,1 + ,14 + ,20 + ,20 + ,21 + ,1 + ,18 + ,20 + ,25 + ,23 + ,1 + ,15 + ,15 + ,13 + ,21 + ,1 + ,9 + ,17 + ,21 + ,24 + ,1 + ,11 + ,16 + ,23 + ,22 + ,1 + ,17 + ,20 + ,18 + ,25 + ,2 + ,12) + ,dim=c(5 + ,148) + ,dimnames=list(c('I/Accomp.' + ,'E/Introjected' + ,'E/Ext.Regulation' + ,'gender' + ,'PE') + ,1:148)) > y <- array(NA,dim=c(5,148),dimnames=list(c('I/Accomp.','E/Introjected','E/Ext.Regulation','gender','PE'),1:148)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '2' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x E/Introjected I/Accomp. E/Ext.Regulation gender PE 1 11 13 23 1 6 2 22 12 24 2 5 3 23 26 24 2 20 4 21 16 21 2 12 5 19 18 21 2 11 6 12 12 19 2 12 7 24 18 12 1 11 8 21 20 21 1 9 9 21 18 25 2 13 10 26 24 27 2 9 11 18 17 21 1 14 12 21 19 27 1 12 13 22 12 20 1 18 14 26 25 16 2 9 15 20 23 26 1 15 16 20 22 24 2 12 17 26 23 25 2 12 18 27 16 25 1 12 19 27 16 27 1 15 20 16 15 23 2 11 21 26 24 22 1 13 22 20 18 10 1 10 23 25 23 25 2 17 24 16 18 18 1 13 25 20 19 21 1 17 26 20 17 20 1 15 27 24 22 18 1 13 28 24 22 25 1 17 29 22 8 28 1 21 30 18 12 27 1 12 31 21 22 20 2 12 32 17 16 20 1 15 33 15 12 20 2 8 34 28 28 27 2 15 35 23 15 23 1 16 36 19 17 23 2 9 37 15 16 22 2 13 38 26 24 26 1 11 39 20 27 21 1 9 40 11 10 17 1 15 41 17 20 27 2 9 42 16 17 16 2 15 43 21 20 26 1 14 44 18 16 17 1 8 45 17 16 24 2 11 46 21 22 23 2 14 47 18 19 20 1 14 48 16 11 10 1 12 49 13 11 21 1 15 50 28 28 25 1 11 51 25 12 28 1 11 52 24 22 25 2 9 53 15 15 20 2 8 54 21 19 20 1 13 55 11 12 27 1 12 56 27 18 26 1 24 57 23 21 19 2 11 58 21 21 26 1 11 59 16 15 20 2 16 60 20 12 22 1 12 61 21 25 19 2 18 62 10 12 23 2 12 63 18 25 28 2 14 64 20 17 22 2 16 65 21 26 27 2 24 66 24 24 14 1 13 67 26 18 25 1 11 68 23 20 22 1 14 69 22 17 24 1 16 70 13 11 23 1 12 71 27 27 25 1 21 72 24 14 28 2 11 73 19 22 28 1 6 74 17 19 16 2 9 75 16 19 25 1 14 76 20 18 21 1 16 77 8 9 27 1 18 78 16 22 21 2 9 79 17 17 22 1 13 80 23 23 26 2 17 81 18 16 21 1 11 82 24 23 24 1 16 83 17 13 24 1 11 84 20 21 23 1 11 85 22 17 26 2 11 86 22 15 21 1 20 87 20 16 24 1 10 88 18 19 23 1 12 89 21 19 21 2 11 90 23 16 20 1 14 91 28 23 22 1 12 92 19 19 26 1 12 93 22 17 23 1 12 94 17 20 23 2 10 95 25 25 22 2 12 96 22 22 25 2 10 97 21 18 21 2 10 98 15 16 21 1 13 99 20 18 25 1 12 100 25 15 26 2 13 101 21 19 21 1 9 102 24 23 24 1 14 103 23 20 21 2 14 104 22 24 23 1 12 105 14 17 24 1 18 106 11 20 24 1 17 107 22 11 24 1 12 108 22 20 25 1 15 109 6 8 28 1 8 110 15 22 18 2 8 111 26 20 28 1 12 112 26 23 22 1 10 113 20 11 28 1 18 114 26 22 22 1 15 115 15 10 24 1 16 116 25 19 27 2 11 117 22 26 21 2 10 118 20 22 26 2 7 119 18 12 24 1 17 120 23 13 25 1 7 121 22 19 20 2 14 122 23 19 21 1 12 123 17 21 23 1 15 124 20 11 23 1 13 125 21 21 19 2 10 126 23 25 22 1 16 127 25 27 15 2 11 128 25 21 24 2 7 129 21 14 18 2 15 130 22 16 18 1 18 131 18 16 23 1 11 132 18 19 17 1 13 133 18 24 19 2 11 134 21 18 21 2 13 135 21 16 12 2 12 136 25 20 25 2 11 137 24 19 25 1 11 138 24 20 24 1 13 139 28 27 24 2 8 140 24 24 24 2 12 141 22 23 22 2 9 142 22 20 22 1 14 143 20 20 21 1 18 144 25 20 23 1 15 145 13 15 21 1 9 146 21 17 24 1 11 147 23 16 22 1 17 148 18 20 25 2 12 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) `I/Accomp.` `E/Ext.Regulation` gender 7.1989 0.5371 0.1397 -0.6692 PE 0.0868 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -11.0993 -2.1290 0.2915 2.3898 7.3434 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.19886 2.58879 2.781 0.00615 ** `I/Accomp.` 0.53710 0.06759 7.947 5.21e-13 *** `E/Ext.Regulation` 0.13967 0.08301 1.683 0.09464 . gender -0.66921 0.64133 -1.043 0.29849 PE 0.08680 0.09022 0.962 0.33764 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.583 on 143 degrees of freedom Multiple R-squared: 0.3258, Adjusted R-squared: 0.3069 F-statistic: 17.27 on 4 and 143 DF, p-value: 1.394e-11 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.6252191 0.74956183 0.37478092 [2,] 0.5747868 0.85042644 0.42521322 [3,] 0.5513459 0.89730818 0.44865409 [4,] 0.5620459 0.87590825 0.43795413 [5,] 0.5593554 0.88128914 0.44064457 [6,] 0.8059153 0.38816948 0.19408474 [7,] 0.7390348 0.52193031 0.26096516 [8,] 0.6909198 0.61816049 0.30908024 [9,] 0.6419312 0.71613764 0.35806882 [10,] 0.6175176 0.76496489 0.38248245 [11,] 0.8385840 0.32283201 0.16141600 [12,] 0.9083652 0.18326966 0.09163483 [13,] 0.8953118 0.20937631 0.10468815 [14,] 0.8636945 0.27261091 0.13630545 [15,] 0.8235043 0.35299141 0.17649571 [16,] 0.7798760 0.44024807 0.22012404 [17,] 0.8118492 0.37630162 0.18815081 [18,] 0.7737479 0.45250411 0.22625206 [19,] 0.7210269 0.55794612 0.27897306 [20,] 0.6718699 0.65626013 0.32813006 [21,] 0.6114457 0.77710869 0.38855435 [22,] 0.6305293 0.73894134 0.36947067 [23,] 0.5768122 0.84637566 0.42318783 [24,] 0.5194479 0.96110413 0.48055207 [25,] 0.5034989 0.99300216 0.49650108 [26,] 0.4541514 0.90830281 0.54584860 [27,] 0.4064148 0.81282964 0.59358518 [28,] 0.3876632 0.77532647 0.61233676 [29,] 0.3337082 0.66741644 0.66629178 [30,] 0.3544888 0.70897761 0.64551120 [31,] 0.3091296 0.61825919 0.69087041 [32,] 0.3542984 0.70859673 0.64570163 [33,] 0.4122055 0.82441108 0.58779446 [34,] 0.4402024 0.88040474 0.55979763 [35,] 0.4108868 0.82177363 0.58911318 [36,] 0.3714265 0.74285295 0.62857352 [37,] 0.3213647 0.64272934 0.67863533 [38,] 0.2864410 0.57288203 0.71355899 [39,] 0.2465722 0.49314434 0.75342783 [40,] 0.2335636 0.46712730 0.76643635 [41,] 0.2001095 0.40021894 0.79989053 [42,] 0.2116419 0.42328379 0.78835811 [43,] 0.1843326 0.36866521 0.81566740 [44,] 0.2771261 0.55425222 0.72287389 [45,] 0.2483825 0.49676501 0.75161750 [46,] 0.2249461 0.44989224 0.77505388 [47,] 0.1884108 0.37682161 0.81158920 [48,] 0.3182124 0.63642472 0.68178764 [49,] 0.3476055 0.69521093 0.65239453 [50,] 0.3220633 0.64412656 0.67793672 [51,] 0.2877023 0.57540467 0.71229766 [52,] 0.2617821 0.52356425 0.73821788 [53,] 0.2449959 0.48999183 0.75500409 [54,] 0.2256529 0.45130586 0.77434707 [55,] 0.3204899 0.64097983 0.67951008 [56,] 0.4181502 0.83630048 0.58184976 [57,] 0.3730558 0.74611158 0.62694421 [58,] 0.4072722 0.81454439 0.59272780 [59,] 0.3697251 0.73945011 0.63027495 [60,] 0.4212275 0.84245506 0.57877247 [61,] 0.3813390 0.76267801 0.61866099 [62,] 0.3430006 0.68600114 0.65699943 [63,] 0.3515022 0.70300436 0.64849782 [64,] 0.3100185 0.62003692 0.68998154 [65,] 0.3742084 0.74841671 0.62579164 [66,] 0.3817866 0.76357327 0.61821337 [67,] 0.3544178 0.70883558 0.64558221 [68,] 0.4141390 0.82827796 0.58586102 [69,] 0.3690426 0.73808523 0.63095739 [70,] 0.6119991 0.77600185 0.38800092 [71,] 0.6712569 0.65748621 0.32874310 [72,] 0.6551205 0.68975900 0.34487950 [73,] 0.6132541 0.77349172 0.38674586 [74,] 0.5695040 0.86099202 0.43049601 [75,] 0.5222645 0.95547102 0.47773551 [76,] 0.4768833 0.95376662 0.52311669 [77,] 0.4405510 0.88110193 0.55944904 [78,] 0.4108189 0.82163790 0.58918105 [79,] 0.3863337 0.77266745 0.61366628 [80,] 0.3416533 0.68330651 0.65834674 [81,] 0.3259037 0.65180746 0.67409627 [82,] 0.2865863 0.57317261 0.71341369 [83,] 0.2901874 0.58037482 0.70981259 [84,] 0.3390912 0.67818235 0.66090882 [85,] 0.3120167 0.62403346 0.68798327 [86,] 0.2839356 0.56787130 0.71606435 [87,] 0.2980865 0.59617297 0.70191351 [88,] 0.2624900 0.52497991 0.73751005 [89,] 0.2256745 0.45134906 0.77432547 [90,] 0.1947571 0.38951415 0.80524293 [91,] 0.2044722 0.40894443 0.79552778 [92,] 0.1712218 0.34244361 0.82877819 [93,] 0.2182964 0.43659287 0.78170356 [94,] 0.1828718 0.36574360 0.81712820 [95,] 0.1522876 0.30457512 0.84771244 [96,] 0.1307878 0.26157551 0.86921224 [97,] 0.1082367 0.21647338 0.89176331 [98,] 0.1704436 0.34088728 0.82955636 [99,] 0.6040683 0.79186349 0.39593174 [100,] 0.6556513 0.68869747 0.34434874 [101,] 0.6070355 0.78592899 0.39296449 [102,] 0.9041686 0.19166282 0.09583141 [103,] 0.9529450 0.09410993 0.04705497 [104,] 0.9508989 0.09820226 0.04910113 [105,] 0.9505317 0.09893653 0.04946826 [106,] 0.9342673 0.13146543 0.06573272 [107,] 0.9384647 0.12307061 0.06153530 [108,] 0.9439389 0.11212211 0.05606105 [109,] 0.9370173 0.12596541 0.06298270 [110,] 0.9191890 0.16162200 0.08081100 [111,] 0.9177454 0.16450928 0.08225464 [112,] 0.8980131 0.20397372 0.10198686 [113,] 0.9093117 0.18137653 0.09068827 [114,] 0.8794959 0.24100823 0.12050411 [115,] 0.8639538 0.27209250 0.13604625 [116,] 0.9197024 0.16059524 0.08029762 [117,] 0.8996925 0.20061505 0.10030752 [118,] 0.8635995 0.27280102 0.13640051 [119,] 0.8288401 0.34231974 0.17115987 [120,] 0.7902228 0.41955435 0.20977717 [121,] 0.7959872 0.40802558 0.20401279 [122,] 0.7506290 0.49874196 0.24937098 [123,] 0.6973252 0.60534954 0.30267477 [124,] 0.6283463 0.74330730 0.37165365 [125,] 0.5653528 0.86929442 0.43464721 [126,] 0.7092205 0.58155904 0.29077952 [127,] 0.6179134 0.76417314 0.38208657 [128,] 0.8395275 0.32094504 0.16047252 [129,] 0.8774340 0.24513197 0.12256598 [130,] 0.7992968 0.40140642 0.20070321 [131,] 0.6931078 0.61378434 0.30689217 [132,] 0.5798764 0.84024723 0.42012362 [133,] 0.4119646 0.82392925 0.58803537 > postscript(file="/var/www/html/freestat/rcomp/tmp/13he91293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/23he91293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/33he91293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/4w8wu1293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/5w8wu1293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 148 Frequency = 1 1 2 3 4 5 6 -6.24522195 5.90820809 -1.91309774 2.57127198 -0.41612938 -4.00098526 7 8 9 10 11 12 5.17173204 0.01405338 0.85158113 2.69682286 -1.80862807 -0.54728253 13 14 15 16 17 18 4.66935714 3.69614657 -3.81638696 -2.07034215 3.25288479 7.34336190 19 20 21 22 23 24 6.80362658 -2.08418387 2.37880421 1.53787678 1.81890836 -3.83990692 25 26 27 28 29 30 -1.14321058 0.24425137 2.01169978 0.68679553 5.43996674 0.21240574 31 32 33 34 35 36 -0.51164323 -2.21865030 -0.79347885 2.02765785 3.81262855 0.01521005 37 38 39 40 41 42 -3.65519803 1.99369586 -4.74563489 -4.57703616 -4.15478384 -2.52783854 43 44 45 46 47 48 -1.11829670 -0.19205911 -1.76095692 -1.10425799 -2.74314999 1.12397448 49 50 51 52 53 54 -3.67283341 1.98497730 7.15952629 2.05036897 -2.40477382 0.34364530 55 56 57 58 59 60 -6.78759426 5.08794710 2.25192511 -1.39500916 -2.09913610 2.91077939 61 62 63 64 65 66 -2.50403519 -6.55968418 -6.41392662 0.54731779 -4.67930307 1.49620206 67 68 69 70 71 72 5.35596054 1.44040223 1.59875717 -3.69179701 0.65412276 5.75454080 73 74 75 76 77 78 -3.77748052 -2.08126348 -5.44152364 -0.51931697 -8.69707100 -5.39093211 79 80 81 82 83 84 -2.86150752 -0.32076637 -1.01114389 0.37616722 -0.81887311 -1.97598497 85 86 87 88 89 90 2.42259529 2.74479687 0.65662720 -2.98858361 1.04677230 3.86814498 91 92 93 94 95 96 5.00269782 -2.40760780 2.08561304 -3.68288020 1.59771233 -0.03642631 97 98 99 100 101 102 1.67066591 -4.18473446 -0.73083475 6.32320137 0.55115171 0.54975779 103 104 105 106 107 108 2.24928812 -1.67407523 -6.57483340 -11.09933309 5.16852825 -0.06541725 109 110 111 112 113 114 -9.43169455 -5.88511263 3.77594441 3.17628839 2.08905762 3.27941029 115 116 117 118 119 120 -1.64155456 4.20872391 -1.62612069 -1.91571519 0.19745350 5.38863330 121 122 123 124 125 126 1.92606117 2.29076585 -5.32316611 3.22140770 0.33872039 -1.41867997 127 128 129 130 131 132 1.58803408 3.90073260 3.80410697 2.80031330 -1.29049335 -2.23733051 133 134 135 136 137 138 -4.35936986 1.41028005 3.82834456 3.95097505 2.81886221 2.24784805 139 140 141 142 143 144 3.59134737 0.85546120 -0.06770516 0.44040223 -1.76710419 3.21393221 145 146 147 148 -5.30045499 1.03273359 3.32840967 -3.13582024 > postscript(file="/var/www/html/freestat/rcomp/tmp/6w8wu1293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 148 Frequency = 1 lag(myerror, k = 1) myerror 0 -6.24522195 NA 1 5.90820809 -6.24522195 2 -1.91309774 5.90820809 3 2.57127198 -1.91309774 4 -0.41612938 2.57127198 5 -4.00098526 -0.41612938 6 5.17173204 -4.00098526 7 0.01405338 5.17173204 8 0.85158113 0.01405338 9 2.69682286 0.85158113 10 -1.80862807 2.69682286 11 -0.54728253 -1.80862807 12 4.66935714 -0.54728253 13 3.69614657 4.66935714 14 -3.81638696 3.69614657 15 -2.07034215 -3.81638696 16 3.25288479 -2.07034215 17 7.34336190 3.25288479 18 6.80362658 7.34336190 19 -2.08418387 6.80362658 20 2.37880421 -2.08418387 21 1.53787678 2.37880421 22 1.81890836 1.53787678 23 -3.83990692 1.81890836 24 -1.14321058 -3.83990692 25 0.24425137 -1.14321058 26 2.01169978 0.24425137 27 0.68679553 2.01169978 28 5.43996674 0.68679553 29 0.21240574 5.43996674 30 -0.51164323 0.21240574 31 -2.21865030 -0.51164323 32 -0.79347885 -2.21865030 33 2.02765785 -0.79347885 34 3.81262855 2.02765785 35 0.01521005 3.81262855 36 -3.65519803 0.01521005 37 1.99369586 -3.65519803 38 -4.74563489 1.99369586 39 -4.57703616 -4.74563489 40 -4.15478384 -4.57703616 41 -2.52783854 -4.15478384 42 -1.11829670 -2.52783854 43 -0.19205911 -1.11829670 44 -1.76095692 -0.19205911 45 -1.10425799 -1.76095692 46 -2.74314999 -1.10425799 47 1.12397448 -2.74314999 48 -3.67283341 1.12397448 49 1.98497730 -3.67283341 50 7.15952629 1.98497730 51 2.05036897 7.15952629 52 -2.40477382 2.05036897 53 0.34364530 -2.40477382 54 -6.78759426 0.34364530 55 5.08794710 -6.78759426 56 2.25192511 5.08794710 57 -1.39500916 2.25192511 58 -2.09913610 -1.39500916 59 2.91077939 -2.09913610 60 -2.50403519 2.91077939 61 -6.55968418 -2.50403519 62 -6.41392662 -6.55968418 63 0.54731779 -6.41392662 64 -4.67930307 0.54731779 65 1.49620206 -4.67930307 66 5.35596054 1.49620206 67 1.44040223 5.35596054 68 1.59875717 1.44040223 69 -3.69179701 1.59875717 70 0.65412276 -3.69179701 71 5.75454080 0.65412276 72 -3.77748052 5.75454080 73 -2.08126348 -3.77748052 74 -5.44152364 -2.08126348 75 -0.51931697 -5.44152364 76 -8.69707100 -0.51931697 77 -5.39093211 -8.69707100 78 -2.86150752 -5.39093211 79 -0.32076637 -2.86150752 80 -1.01114389 -0.32076637 81 0.37616722 -1.01114389 82 -0.81887311 0.37616722 83 -1.97598497 -0.81887311 84 2.42259529 -1.97598497 85 2.74479687 2.42259529 86 0.65662720 2.74479687 87 -2.98858361 0.65662720 88 1.04677230 -2.98858361 89 3.86814498 1.04677230 90 5.00269782 3.86814498 91 -2.40760780 5.00269782 92 2.08561304 -2.40760780 93 -3.68288020 2.08561304 94 1.59771233 -3.68288020 95 -0.03642631 1.59771233 96 1.67066591 -0.03642631 97 -4.18473446 1.67066591 98 -0.73083475 -4.18473446 99 6.32320137 -0.73083475 100 0.55115171 6.32320137 101 0.54975779 0.55115171 102 2.24928812 0.54975779 103 -1.67407523 2.24928812 104 -6.57483340 -1.67407523 105 -11.09933309 -6.57483340 106 5.16852825 -11.09933309 107 -0.06541725 5.16852825 108 -9.43169455 -0.06541725 109 -5.88511263 -9.43169455 110 3.77594441 -5.88511263 111 3.17628839 3.77594441 112 2.08905762 3.17628839 113 3.27941029 2.08905762 114 -1.64155456 3.27941029 115 4.20872391 -1.64155456 116 -1.62612069 4.20872391 117 -1.91571519 -1.62612069 118 0.19745350 -1.91571519 119 5.38863330 0.19745350 120 1.92606117 5.38863330 121 2.29076585 1.92606117 122 -5.32316611 2.29076585 123 3.22140770 -5.32316611 124 0.33872039 3.22140770 125 -1.41867997 0.33872039 126 1.58803408 -1.41867997 127 3.90073260 1.58803408 128 3.80410697 3.90073260 129 2.80031330 3.80410697 130 -1.29049335 2.80031330 131 -2.23733051 -1.29049335 132 -4.35936986 -2.23733051 133 1.41028005 -4.35936986 134 3.82834456 1.41028005 135 3.95097505 3.82834456 136 2.81886221 3.95097505 137 2.24784805 2.81886221 138 3.59134737 2.24784805 139 0.85546120 3.59134737 140 -0.06770516 0.85546120 141 0.44040223 -0.06770516 142 -1.76710419 0.44040223 143 3.21393221 -1.76710419 144 -5.30045499 3.21393221 145 1.03273359 -5.30045499 146 3.32840967 1.03273359 147 -3.13582024 3.32840967 148 NA -3.13582024 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 5.90820809 -6.24522195 [2,] -1.91309774 5.90820809 [3,] 2.57127198 -1.91309774 [4,] -0.41612938 2.57127198 [5,] -4.00098526 -0.41612938 [6,] 5.17173204 -4.00098526 [7,] 0.01405338 5.17173204 [8,] 0.85158113 0.01405338 [9,] 2.69682286 0.85158113 [10,] -1.80862807 2.69682286 [11,] -0.54728253 -1.80862807 [12,] 4.66935714 -0.54728253 [13,] 3.69614657 4.66935714 [14,] -3.81638696 3.69614657 [15,] -2.07034215 -3.81638696 [16,] 3.25288479 -2.07034215 [17,] 7.34336190 3.25288479 [18,] 6.80362658 7.34336190 [19,] -2.08418387 6.80362658 [20,] 2.37880421 -2.08418387 [21,] 1.53787678 2.37880421 [22,] 1.81890836 1.53787678 [23,] -3.83990692 1.81890836 [24,] -1.14321058 -3.83990692 [25,] 0.24425137 -1.14321058 [26,] 2.01169978 0.24425137 [27,] 0.68679553 2.01169978 [28,] 5.43996674 0.68679553 [29,] 0.21240574 5.43996674 [30,] -0.51164323 0.21240574 [31,] -2.21865030 -0.51164323 [32,] -0.79347885 -2.21865030 [33,] 2.02765785 -0.79347885 [34,] 3.81262855 2.02765785 [35,] 0.01521005 3.81262855 [36,] -3.65519803 0.01521005 [37,] 1.99369586 -3.65519803 [38,] -4.74563489 1.99369586 [39,] -4.57703616 -4.74563489 [40,] -4.15478384 -4.57703616 [41,] -2.52783854 -4.15478384 [42,] -1.11829670 -2.52783854 [43,] -0.19205911 -1.11829670 [44,] -1.76095692 -0.19205911 [45,] -1.10425799 -1.76095692 [46,] -2.74314999 -1.10425799 [47,] 1.12397448 -2.74314999 [48,] -3.67283341 1.12397448 [49,] 1.98497730 -3.67283341 [50,] 7.15952629 1.98497730 [51,] 2.05036897 7.15952629 [52,] -2.40477382 2.05036897 [53,] 0.34364530 -2.40477382 [54,] -6.78759426 0.34364530 [55,] 5.08794710 -6.78759426 [56,] 2.25192511 5.08794710 [57,] -1.39500916 2.25192511 [58,] -2.09913610 -1.39500916 [59,] 2.91077939 -2.09913610 [60,] -2.50403519 2.91077939 [61,] -6.55968418 -2.50403519 [62,] -6.41392662 -6.55968418 [63,] 0.54731779 -6.41392662 [64,] -4.67930307 0.54731779 [65,] 1.49620206 -4.67930307 [66,] 5.35596054 1.49620206 [67,] 1.44040223 5.35596054 [68,] 1.59875717 1.44040223 [69,] -3.69179701 1.59875717 [70,] 0.65412276 -3.69179701 [71,] 5.75454080 0.65412276 [72,] -3.77748052 5.75454080 [73,] -2.08126348 -3.77748052 [74,] -5.44152364 -2.08126348 [75,] -0.51931697 -5.44152364 [76,] -8.69707100 -0.51931697 [77,] -5.39093211 -8.69707100 [78,] -2.86150752 -5.39093211 [79,] -0.32076637 -2.86150752 [80,] -1.01114389 -0.32076637 [81,] 0.37616722 -1.01114389 [82,] -0.81887311 0.37616722 [83,] -1.97598497 -0.81887311 [84,] 2.42259529 -1.97598497 [85,] 2.74479687 2.42259529 [86,] 0.65662720 2.74479687 [87,] -2.98858361 0.65662720 [88,] 1.04677230 -2.98858361 [89,] 3.86814498 1.04677230 [90,] 5.00269782 3.86814498 [91,] -2.40760780 5.00269782 [92,] 2.08561304 -2.40760780 [93,] -3.68288020 2.08561304 [94,] 1.59771233 -3.68288020 [95,] -0.03642631 1.59771233 [96,] 1.67066591 -0.03642631 [97,] -4.18473446 1.67066591 [98,] -0.73083475 -4.18473446 [99,] 6.32320137 -0.73083475 [100,] 0.55115171 6.32320137 [101,] 0.54975779 0.55115171 [102,] 2.24928812 0.54975779 [103,] -1.67407523 2.24928812 [104,] -6.57483340 -1.67407523 [105,] -11.09933309 -6.57483340 [106,] 5.16852825 -11.09933309 [107,] -0.06541725 5.16852825 [108,] -9.43169455 -0.06541725 [109,] -5.88511263 -9.43169455 [110,] 3.77594441 -5.88511263 [111,] 3.17628839 3.77594441 [112,] 2.08905762 3.17628839 [113,] 3.27941029 2.08905762 [114,] -1.64155456 3.27941029 [115,] 4.20872391 -1.64155456 [116,] -1.62612069 4.20872391 [117,] -1.91571519 -1.62612069 [118,] 0.19745350 -1.91571519 [119,] 5.38863330 0.19745350 [120,] 1.92606117 5.38863330 [121,] 2.29076585 1.92606117 [122,] -5.32316611 2.29076585 [123,] 3.22140770 -5.32316611 [124,] 0.33872039 3.22140770 [125,] -1.41867997 0.33872039 [126,] 1.58803408 -1.41867997 [127,] 3.90073260 1.58803408 [128,] 3.80410697 3.90073260 [129,] 2.80031330 3.80410697 [130,] -1.29049335 2.80031330 [131,] -2.23733051 -1.29049335 [132,] -4.35936986 -2.23733051 [133,] 1.41028005 -4.35936986 [134,] 3.82834456 1.41028005 [135,] 3.95097505 3.82834456 [136,] 2.81886221 3.95097505 [137,] 2.24784805 2.81886221 [138,] 3.59134737 2.24784805 [139,] 0.85546120 3.59134737 [140,] -0.06770516 0.85546120 [141,] 0.44040223 -0.06770516 [142,] -1.76710419 0.44040223 [143,] 3.21393221 -1.76710419 [144,] -5.30045499 3.21393221 [145,] 1.03273359 -5.30045499 [146,] 3.32840967 1.03273359 [147,] -3.13582024 3.32840967 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 5.90820809 -6.24522195 2 -1.91309774 5.90820809 3 2.57127198 -1.91309774 4 -0.41612938 2.57127198 5 -4.00098526 -0.41612938 6 5.17173204 -4.00098526 7 0.01405338 5.17173204 8 0.85158113 0.01405338 9 2.69682286 0.85158113 10 -1.80862807 2.69682286 11 -0.54728253 -1.80862807 12 4.66935714 -0.54728253 13 3.69614657 4.66935714 14 -3.81638696 3.69614657 15 -2.07034215 -3.81638696 16 3.25288479 -2.07034215 17 7.34336190 3.25288479 18 6.80362658 7.34336190 19 -2.08418387 6.80362658 20 2.37880421 -2.08418387 21 1.53787678 2.37880421 22 1.81890836 1.53787678 23 -3.83990692 1.81890836 24 -1.14321058 -3.83990692 25 0.24425137 -1.14321058 26 2.01169978 0.24425137 27 0.68679553 2.01169978 28 5.43996674 0.68679553 29 0.21240574 5.43996674 30 -0.51164323 0.21240574 31 -2.21865030 -0.51164323 32 -0.79347885 -2.21865030 33 2.02765785 -0.79347885 34 3.81262855 2.02765785 35 0.01521005 3.81262855 36 -3.65519803 0.01521005 37 1.99369586 -3.65519803 38 -4.74563489 1.99369586 39 -4.57703616 -4.74563489 40 -4.15478384 -4.57703616 41 -2.52783854 -4.15478384 42 -1.11829670 -2.52783854 43 -0.19205911 -1.11829670 44 -1.76095692 -0.19205911 45 -1.10425799 -1.76095692 46 -2.74314999 -1.10425799 47 1.12397448 -2.74314999 48 -3.67283341 1.12397448 49 1.98497730 -3.67283341 50 7.15952629 1.98497730 51 2.05036897 7.15952629 52 -2.40477382 2.05036897 53 0.34364530 -2.40477382 54 -6.78759426 0.34364530 55 5.08794710 -6.78759426 56 2.25192511 5.08794710 57 -1.39500916 2.25192511 58 -2.09913610 -1.39500916 59 2.91077939 -2.09913610 60 -2.50403519 2.91077939 61 -6.55968418 -2.50403519 62 -6.41392662 -6.55968418 63 0.54731779 -6.41392662 64 -4.67930307 0.54731779 65 1.49620206 -4.67930307 66 5.35596054 1.49620206 67 1.44040223 5.35596054 68 1.59875717 1.44040223 69 -3.69179701 1.59875717 70 0.65412276 -3.69179701 71 5.75454080 0.65412276 72 -3.77748052 5.75454080 73 -2.08126348 -3.77748052 74 -5.44152364 -2.08126348 75 -0.51931697 -5.44152364 76 -8.69707100 -0.51931697 77 -5.39093211 -8.69707100 78 -2.86150752 -5.39093211 79 -0.32076637 -2.86150752 80 -1.01114389 -0.32076637 81 0.37616722 -1.01114389 82 -0.81887311 0.37616722 83 -1.97598497 -0.81887311 84 2.42259529 -1.97598497 85 2.74479687 2.42259529 86 0.65662720 2.74479687 87 -2.98858361 0.65662720 88 1.04677230 -2.98858361 89 3.86814498 1.04677230 90 5.00269782 3.86814498 91 -2.40760780 5.00269782 92 2.08561304 -2.40760780 93 -3.68288020 2.08561304 94 1.59771233 -3.68288020 95 -0.03642631 1.59771233 96 1.67066591 -0.03642631 97 -4.18473446 1.67066591 98 -0.73083475 -4.18473446 99 6.32320137 -0.73083475 100 0.55115171 6.32320137 101 0.54975779 0.55115171 102 2.24928812 0.54975779 103 -1.67407523 2.24928812 104 -6.57483340 -1.67407523 105 -11.09933309 -6.57483340 106 5.16852825 -11.09933309 107 -0.06541725 5.16852825 108 -9.43169455 -0.06541725 109 -5.88511263 -9.43169455 110 3.77594441 -5.88511263 111 3.17628839 3.77594441 112 2.08905762 3.17628839 113 3.27941029 2.08905762 114 -1.64155456 3.27941029 115 4.20872391 -1.64155456 116 -1.62612069 4.20872391 117 -1.91571519 -1.62612069 118 0.19745350 -1.91571519 119 5.38863330 0.19745350 120 1.92606117 5.38863330 121 2.29076585 1.92606117 122 -5.32316611 2.29076585 123 3.22140770 -5.32316611 124 0.33872039 3.22140770 125 -1.41867997 0.33872039 126 1.58803408 -1.41867997 127 3.90073260 1.58803408 128 3.80410697 3.90073260 129 2.80031330 3.80410697 130 -1.29049335 2.80031330 131 -2.23733051 -1.29049335 132 -4.35936986 -2.23733051 133 1.41028005 -4.35936986 134 3.82834456 1.41028005 135 3.95097505 3.82834456 136 2.81886221 3.95097505 137 2.24784805 2.81886221 138 3.59134737 2.24784805 139 0.85546120 3.59134737 140 -0.06770516 0.85546120 141 0.44040223 -0.06770516 142 -1.76710419 0.44040223 143 3.21393221 -1.76710419 144 -5.30045499 3.21393221 145 1.03273359 -5.30045499 146 3.32840967 1.03273359 147 -3.13582024 3.32840967 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/71eoq1293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/81eoq1293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/9unnt1293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/freestat/rcomp/tmp/10unnt1293049684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/freestat/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/freestat/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/11fomh1293049684.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/12jokn1293049684.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/1377hy1293049684.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/140gg11293049684.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/freestat/rcomp/tmp/15lhx71293049684.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/freestat/rcomp/tmp/16i9dg1293049684.tab") + } > > try(system("convert tmp/13he91293049684.ps tmp/13he91293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/23he91293049684.ps tmp/23he91293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/33he91293049684.ps tmp/33he91293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/4w8wu1293049684.ps tmp/4w8wu1293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/5w8wu1293049684.ps tmp/5w8wu1293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/6w8wu1293049684.ps tmp/6w8wu1293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/71eoq1293049684.ps tmp/71eoq1293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/81eoq1293049684.ps tmp/81eoq1293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/9unnt1293049684.ps tmp/9unnt1293049684.png",intern=TRUE)) character(0) > try(system("convert tmp/10unnt1293049684.ps tmp/10unnt1293049684.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 5.323 2.643 5.687