R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(7.14,7.24,7.33,7.61,7.66,7.69,7.7,7.68,7.71,7.71,7.72,7.68,7.72,7.74,7.76,7.9,7.97,7.96,7.95,7.97,7.93,7.99,7.96,7.92,7.97,7.98,8,8.04,8.17,8.29,8.26,8.3,8.32,8.28,8.27,8.32,8.31,8.34,8.32,8.36,8.33,8.35,8.34,8.37,8.31,8.33,8.34,8.25,8.27,8.31,8.25,8.3,8.3,8.35,8.78,8.9) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '24' > par1 <- as.numeric(par1) #cut off periods > par1 <- 28 > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par6 <- 3 > par7 <- as.numeric(par7) #q > par7 <- 3 > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 -0.3250 0.4938 0.420 0.3767 0.3726 0.9931 s.e. 0.2637 0.2517 0.319 0.2833 0.3543 0.4673 sigma^2 estimated as 0.001258: log likelihood = 24.99, aic = -35.97 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 29 End = 56 Frequency = 1 [1] 8.119159 8.021801 7.943586 7.946459 7.841651 7.885607 7.821623 7.757527 [9] 7.791837 7.780765 7.789745 7.816331 7.885558 7.780175 7.694030 7.691346 [17] 7.581057 7.620720 7.553091 7.485758 7.517517 7.504144 7.511252 7.536239 [25] 7.604095 7.497582 7.410456 7.406956 $se Time Series: Start = 29 End = 56 Frequency = 1 [1] 0.03862829 0.05543110 0.09015664 0.14231721 0.18195777 0.23246841 [7] 0.27802534 0.32421163 0.37041445 0.41424970 0.45807003 0.50005204 [13] 0.55693542 0.61098603 0.67458037 0.75039673 0.82155806 0.90031707 [19] 0.97648080 1.05297163 1.12920633 1.20317114 1.27651204 1.34774642 [25] 1.42991512 1.50974662 1.59666178 1.69295693 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 29 End = 56 Frequency = 1 [1] 8.043447 7.913156 7.766879 7.667517 7.485014 7.429969 7.276693 7.122073 [9] 7.065825 6.968836 6.891928 6.836229 6.793964 6.582642 6.371852 6.220568 [17] 5.970804 5.856098 5.639188 5.421933 5.304272 5.145928 5.009289 4.894656 [25] 4.801461 4.538478 4.280998 4.088761 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 29 End = 56 Frequency = 1 [1] 8.194870 8.130446 8.120293 8.225401 8.198288 8.341245 8.366553 [8] 8.392982 8.517850 8.592694 8.687563 8.796433 8.977151 8.977707 [15] 9.016207 9.162123 9.191311 9.385341 9.466993 9.549582 9.730761 [22] 9.862359 10.013216 10.177822 10.406728 10.456685 10.539913 10.725152 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 7.140000 7.240000 7.330000 7.610000 7.660000 7.690000 7.700000 7.680000 [9] 7.710000 7.710000 7.720000 7.680000 7.720000 7.740000 7.760000 7.900000 [17] 7.970000 7.960000 7.950000 7.970000 7.930000 7.990000 7.960000 7.920000 [25] 7.970000 7.980000 8.000000 8.040000 8.119159 8.021801 7.943586 7.946459 [33] 7.841651 7.885607 7.821623 7.757527 7.791837 7.780765 7.789745 7.816331 [41] 7.885558 7.780175 7.694030 7.691346 7.581057 7.620720 7.553091 7.485758 [49] 7.517517 7.504144 7.511252 7.536239 7.604095 7.497582 7.410456 7.406956 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 29 End = 56 Frequency = 1 [1] 0.004757671 0.006910058 0.011349614 0.017909514 0.023204012 0.029480092 [7] 0.035545735 0.041793166 0.047538782 0.053240228 0.058804236 0.063975291 [13] 0.070627270 0.078531144 0.087675818 0.097563775 0.108369851 0.118140690 [19] 0.129282280 0.140663334 0.150210024 0.160334234 0.169946633 0.178835420 [25] 0.188045408 0.201364482 0.215460679 0.228563104 > postscript(file="/var/www/rcomp/tmp/1tnf81293194155.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2pxvz1293194155.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3egst1293194155.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/40yrh1293194155.tab") > > try(system("convert tmp/1tnf81293194155.ps tmp/1tnf81293194155.png",intern=TRUE)) character(0) > try(system("convert tmp/2pxvz1293194155.ps tmp/2pxvz1293194155.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.850 0.460 1.308