R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(26,26,27,28,27,29,27,30,27,30,32,30,32,33,34,32,34,37,37,36,34,38,41,41,44,42,45,45,49,54,52,53,51,55,60,60,63,60,64,65,75,70,72,69,75,74,74,75,79,79,85,78,84,85,85,82,91,90,98,98) > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '4' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = 'FALSE' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc*2, ncol=nrc) + pval <- matrix(NA, nrow=nrc*2, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + qqline(residus) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] -0.1399391 -0.03359948 -0.2442989 -0.2363712 0.8180276 0.1369153 [2,] -0.1067777 0.00000000 -0.2347987 -0.2672993 0.8299012 0.1249883 [3,] 0.0000000 0.00000000 -0.2288813 -0.3596304 0.8385907 0.1157652 [4,] 0.0000000 0.00000000 -0.2120956 -0.3660158 0.9635520 0.0000000 [5,] 0.0000000 0.00000000 0.0000000 -0.3930814 0.9530721 0.0000000 [6,] NA NA NA NA NA NA [7,] NA NA NA NA NA NA [8,] NA NA NA NA NA NA [9,] NA NA NA NA NA NA [10,] NA NA NA NA NA NA [11,] NA NA NA NA NA NA [12,] NA NA NA NA NA NA [13,] NA NA NA NA NA NA [14,] NA NA NA NA NA NA [,7] [1,] -0.6861388 [2,] -0.6910616 [3,] -0.6746465 [4,] -0.7297407 [5,] -0.7145055 [6,] NA [7,] NA [8,] NA [9,] NA [10,] NA [11,] NA [12,] NA [13,] NA [14,] NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.66219 0.8465 0.09391 0.46152 0.00021 0.46959 5e-05 [2,] 0.68764 NA 0.08761 0.33234 0.00010 0.48656 4e-05 [3,] NA NA 0.10141 0.00618 0.00009 0.51985 4e-05 [4,] NA NA 0.12355 0.00529 0.00000 NA 0e+00 [5,] NA NA NA 0.00630 0.00000 NA 0e+00 [6,] NA NA NA NA NA NA NA [7,] NA NA NA NA NA NA NA [8,] NA NA NA NA NA NA NA [9,] NA NA NA NA NA NA NA [10,] NA NA NA NA NA NA NA [11,] NA NA NA NA NA NA NA [12,] NA NA NA NA NA NA NA [13,] NA NA NA NA NA NA NA [14,] NA NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.1399 -0.0336 -0.2443 -0.2364 0.8180 0.1369 -0.6861 s.e. 0.3185 0.1727 0.1432 0.3186 0.2048 0.1879 0.1548 sigma^2 estimated as 7.29: log likelihood = -144.5, aic = 304.99 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.1399 -0.0336 -0.2443 -0.2364 0.8180 0.1369 -0.6861 s.e. 0.3185 0.1727 0.1432 0.3186 0.2048 0.1879 0.1548 sigma^2 estimated as 7.29: log likelihood = -144.5, aic = 304.99 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.1068 0 -0.2348 -0.2673 0.8299 0.1250 -0.6911 s.e. 0.2641 0 0.1349 0.2732 0.1970 0.1784 0.1534 sigma^2 estimated as 7.308: log likelihood = -144.52, aic = 303.03 [[3]][[4]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0 -0.2289 -0.3596 0.8386 0.1158 -0.6746 s.e. 0 0 0.1373 0.1262 0.1978 0.1787 0.1497 sigma^2 estimated as 7.318: log likelihood = -144.6, aic = 301.2 [[3]][[5]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0 -0.2121 -0.366 0.9636 0 -0.7297 s.e. 0 0 0.1356 0.126 0.0372 0 0.1142 sigma^2 estimated as 7.388: log likelihood = -144.8, aic = 299.6 [[3]][[6]] NULL [[3]][[7]] NULL $aic [1] 304.9930 303.0304 301.1966 299.5959 299.9295 Warning messages: 1: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 2: In log(s2) : NaNs produced 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In log(s2) : NaNs produced 5: In log(s2) : NaNs produced 6: In log(s2) : NaNs produced 7: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 8: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 9: In log(s2) : NaNs produced > postscript(file="/var/www/rcomp/tmp/1js361293551203.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 60 Frequency = 1 [1] 2.599997e-02 1.668684e-05 7.348981e-01 1.063100e+00 -2.509463e-01 [6] 1.832103e+00 -1.543452e+00 1.647851e+00 -1.332929e+00 1.234199e+00 [11] 3.134758e+00 -2.542518e+00 2.739511e+00 1.059486e+00 3.337587e-01 [16] -1.479186e+00 1.637142e+00 2.464697e+00 -1.003619e-01 -2.413546e-01 [21] -2.018415e+00 1.510112e+00 3.006642e+00 1.083299e+00 4.135402e+00 [26] -2.071322e+00 1.332064e+00 1.509773e+00 3.126326e+00 5.479022e+00 [31] -1.361906e+00 1.476197e+00 -1.973094e+00 5.831597e-01 4.894198e+00 [36] 1.024829e+00 3.294508e+00 -3.226998e+00 1.208893e+00 1.927043e+00 [41] 8.486039e+00 -2.409082e+00 -7.803180e-01 -1.658917e+00 9.852478e-01 [46] -2.378968e-01 -2.780329e+00 1.099769e+00 5.926435e-01 3.351391e-01 [51] 4.982322e+00 -4.972407e+00 6.688259e-01 2.603437e+00 -2.971188e+00 [56] -1.846437e+00 4.570757e+00 2.043878e-01 6.005521e+00 5.217488e+00 > postscript(file="/var/www/rcomp/tmp/2js361293551203.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/3bjkr1293551203.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/4bjkr1293551203.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/5bjkr1293551203.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/6bjkr1293551203.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/7bjkr1293551203.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > qqline(resid) > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/8ptii1293551203.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/9i2h21293551203.tab") > > try(system("convert tmp/1js361293551203.ps tmp/1js361293551203.png",intern=TRUE)) character(0) > try(system("convert tmp/2js361293551203.ps tmp/2js361293551203.png",intern=TRUE)) character(0) > try(system("convert tmp/3bjkr1293551203.ps tmp/3bjkr1293551203.png",intern=TRUE)) character(0) > try(system("convert tmp/4bjkr1293551203.ps tmp/4bjkr1293551203.png",intern=TRUE)) character(0) > try(system("convert tmp/5bjkr1293551203.ps tmp/5bjkr1293551203.png",intern=TRUE)) character(0) > try(system("convert tmp/6bjkr1293551203.ps tmp/6bjkr1293551203.png",intern=TRUE)) character(0) > try(system("convert tmp/7bjkr1293551203.ps tmp/7bjkr1293551203.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.310 0.590 2.917