R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(13 + ,13 + ,14 + ,182 + ,13 + ,169 + ,3 + ,39 + ,2 + ,26 + ,12 + ,12 + ,8 + ,96 + ,13 + ,156 + ,5 + ,60 + ,1 + ,12 + ,15 + ,10 + ,12 + ,120 + ,16 + ,160 + ,6 + ,60 + ,0 + ,0 + ,12 + ,9 + ,7 + ,63 + ,12 + ,108 + ,6 + ,54 + ,3 + ,27 + ,10 + ,10 + ,10 + ,100 + ,11 + ,110 + ,5 + ,50 + ,3 + ,30 + ,12 + ,12 + ,7 + ,84 + ,12 + ,144 + ,3 + ,36 + ,1 + ,12 + ,15 + ,13 + ,16 + ,208 + ,18 + ,234 + ,8 + ,104 + ,3 + ,39 + ,9 + ,12 + ,11 + ,132 + ,11 + ,132 + ,4 + ,48 + ,1 + ,12 + ,12 + ,12 + ,14 + ,168 + ,14 + ,168 + ,4 + ,48 + ,4 + ,48 + ,11 + ,6 + ,6 + ,36 + ,9 + ,54 + ,4 + ,24 + ,0 + ,0 + ,11 + ,5 + ,16 + ,80 + ,14 + ,70 + ,6 + ,30 + ,3 + ,15 + ,11 + ,12 + ,11 + ,132 + ,12 + ,144 + ,6 + ,72 + ,2 + ,24 + ,15 + ,11 + ,16 + ,176 + ,11 + ,121 + ,5 + ,55 + ,4 + ,44 + ,7 + ,14 + ,12 + ,168 + ,12 + ,168 + ,4 + ,56 + ,3 + ,42 + ,11 + ,14 + ,7 + ,98 + ,13 + ,182 + ,6 + ,84 + ,1 + ,14 + ,11 + ,12 + ,13 + ,156 + ,11 + ,132 + ,4 + ,48 + ,1 + ,12 + ,10 + ,12 + ,11 + ,132 + ,12 + ,144 + ,6 + ,72 + ,2 + ,24 + ,14 + ,11 + ,15 + ,165 + ,16 + ,176 + ,6 + ,66 + ,3 + ,33 + ,10 + ,11 + ,7 + ,77 + ,9 + ,99 + ,4 + ,44 + ,1 + ,11 + ,6 + ,7 + ,9 + ,63 + ,11 + ,77 + ,4 + ,28 + ,1 + ,7 + ,11 + ,9 + ,7 + ,63 + ,13 + ,117 + ,2 + ,18 + ,2 + ,18 + ,15 + ,11 + ,14 + ,154 + ,15 + ,165 + ,7 + ,77 + ,3 + ,33 + ,11 + ,11 + ,15 + ,165 + ,10 + ,110 + ,5 + ,55 + ,4 + ,44 + ,12 + ,12 + ,7 + ,84 + ,11 + ,132 + ,4 + ,48 + ,2 + ,24 + ,14 + ,12 + ,15 + ,180 + ,13 + ,156 + ,6 + ,72 + ,1 + ,12 + ,15 + ,11 + ,17 + ,187 + ,16 + ,176 + ,6 + ,66 + ,2 + ,22 + ,9 + ,11 + ,15 + ,165 + ,15 + ,165 + ,7 + ,77 + ,2 + ,22 + ,13 + ,8 + ,14 + ,112 + ,14 + ,112 + ,5 + ,40 + ,4 + ,32 + ,13 + ,9 + ,14 + ,126 + ,14 + ,126 + ,6 + ,54 + ,2 + ,18 + ,16 + ,12 + ,8 + ,96 + ,14 + ,168 + ,4 + ,48 + ,3 + ,36 + ,13 + ,10 + ,8 + ,80 + ,8 + ,80 + ,4 + ,40 + ,3 + ,30 + ,12 + ,10 + ,14 + ,140 + ,13 + ,130 + ,7 + ,70 + ,3 + ,30 + ,14 + ,12 + ,14 + ,168 + ,15 + ,180 + ,7 + ,84 + ,4 + ,48 + ,11 + ,8 + ,8 + ,64 + ,13 + ,104 + ,4 + ,32 + ,2 + ,16 + ,9 + ,12 + ,11 + ,132 + ,11 + ,132 + ,4 + ,48 + ,2 + ,24 + ,16 + ,11 + ,16 + ,176 + ,15 + ,165 + ,6 + ,66 + ,4 + ,44 + ,12 + ,12 + ,10 + ,120 + ,15 + ,180 + ,6 + ,72 + ,3 + ,36 + ,10 + ,7 + ,8 + ,56 + ,9 + ,63 + ,5 + ,35 + ,4 + ,28 + ,13 + ,11 + ,14 + ,154 + ,13 + ,143 + ,6 + ,66 + ,2 + ,22 + ,16 + ,11 + ,16 + ,176 + ,16 + ,176 + ,7 + ,77 + ,5 + ,55 + ,14 + ,12 + ,13 + ,156 + ,13 + ,156 + ,6 + ,72 + ,3 + ,36 + ,15 + ,9 + ,5 + ,45 + ,11 + ,99 + ,3 + ,27 + ,1 + ,9 + ,5 + ,15 + ,8 + ,120 + ,12 + ,180 + ,3 + ,45 + ,1 + ,15 + ,8 + ,11 + ,10 + ,110 + ,12 + ,132 + ,4 + ,44 + ,1 + ,11 + ,11 + ,11 + ,8 + ,88 + ,12 + ,132 + ,6 + ,66 + ,2 + ,22 + ,16 + ,11 + ,13 + ,143 + ,14 + ,154 + ,7 + ,77 + ,3 + ,33 + ,17 + ,11 + ,15 + ,165 + ,14 + ,154 + ,5 + ,55 + ,9 + ,99 + ,9 + ,15 + ,6 + ,90 + ,8 + ,120 + ,4 + ,60 + ,0 + ,0 + ,9 + ,11 + ,12 + ,132 + ,13 + ,143 + ,5 + ,55 + ,0 + ,0 + ,13 + ,12 + ,16 + ,192 + ,16 + ,192 + ,6 + ,72 + ,2 + ,24 + ,10 + ,12 + ,5 + ,60 + ,13 + ,156 + ,6 + ,72 + ,2 + ,24 + ,6 + ,9 + ,15 + ,135 + ,11 + ,99 + ,6 + ,54 + ,3 + ,27 + ,12 + ,12 + ,12 + ,144 + ,14 + ,168 + ,5 + ,60 + ,1 + ,12 + ,8 + ,12 + ,8 + ,96 + ,13 + ,156 + ,4 + ,48 + ,2 + ,24 + ,14 + ,13 + ,13 + ,169 + ,13 + ,169 + ,5 + ,65 + ,0 + ,0 + ,12 + ,11 + ,14 + ,154 + ,13 + ,143 + ,5 + ,55 + ,5 + ,55 + ,11 + ,9 + ,12 + ,108 + ,12 + ,108 + ,4 + ,36 + ,2 + ,18 + ,16 + ,9 + ,16 + ,144 + ,16 + ,144 + ,6 + ,54 + ,4 + ,36 + ,8 + ,11 + ,10 + ,110 + ,15 + ,165 + ,2 + ,22 + ,3 + ,33 + ,15 + ,11 + ,15 + ,165 + ,15 + ,165 + ,8 + ,88 + ,0 + ,0 + ,7 + ,12 + ,8 + ,96 + ,12 + ,144 + ,3 + ,36 + ,0 + ,0 + ,16 + ,12 + ,16 + ,192 + ,14 + ,168 + ,6 + ,72 + ,4 + ,48 + ,14 + ,9 + ,19 + ,171 + ,12 + ,108 + ,6 + ,54 + ,1 + ,9 + ,16 + ,11 + ,14 + ,154 + ,15 + ,165 + ,6 + ,66 + ,1 + ,11 + ,9 + ,9 + ,6 + ,54 + ,12 + ,108 + ,5 + ,45 + ,4 + ,36 + ,14 + ,12 + ,13 + ,156 + ,13 + ,156 + ,5 + ,60 + ,2 + ,24 + ,11 + ,12 + ,15 + ,180 + ,12 + ,144 + ,6 + ,72 + ,4 + ,48 + ,13 + ,12 + ,7 + ,84 + ,12 + ,144 + ,5 + ,60 + ,1 + ,12 + ,15 + ,12 + ,13 + ,156 + ,13 + ,156 + ,6 + ,72 + ,4 + ,48 + ,5 + ,14 + ,4 + ,56 + ,5 + ,70 + ,2 + ,28 + ,2 + ,28 + ,15 + ,11 + ,14 + ,154 + ,13 + ,143 + ,5 + ,55 + ,5 + ,55 + ,13 + ,12 + ,13 + ,156 + ,13 + ,156 + ,5 + ,60 + ,4 + ,48 + ,11 + ,11 + ,11 + ,121 + ,14 + ,154 + ,5 + ,55 + ,4 + ,44 + ,11 + ,6 + ,14 + ,84 + ,17 + ,102 + ,6 + ,36 + ,4 + ,24 + ,12 + ,10 + ,12 + ,120 + ,13 + ,130 + ,6 + ,60 + ,4 + ,40 + ,12 + ,12 + ,15 + ,180 + ,13 + ,156 + ,6 + ,72 + ,3 + ,36 + ,12 + ,13 + ,14 + ,182 + ,12 + ,156 + ,5 + ,65 + ,3 + ,39 + ,12 + ,8 + ,13 + ,104 + ,13 + ,104 + ,5 + ,40 + ,3 + ,24 + ,14 + ,12 + ,8 + ,96 + ,14 + ,168 + ,4 + ,48 + ,2 + ,24 + ,6 + ,12 + ,6 + ,72 + ,11 + ,132 + ,2 + ,24 + ,1 + ,12 + ,7 + ,12 + ,7 + ,84 + ,12 + ,144 + ,4 + ,48 + ,1 + ,12 + ,14 + ,6 + ,13 + ,78 + ,12 + ,72 + ,6 + ,36 + ,5 + ,30 + ,14 + ,11 + ,13 + ,143 + ,16 + ,176 + ,6 + ,66 + ,4 + ,44 + ,10 + ,10 + ,11 + ,110 + ,12 + ,120 + ,5 + ,50 + ,2 + ,20 + ,13 + ,12 + ,5 + ,60 + ,12 + ,144 + ,3 + ,36 + ,3 + ,36 + ,12 + ,13 + ,12 + ,156 + ,12 + ,156 + ,6 + ,78 + ,2 + ,26 + ,9 + ,11 + ,8 + ,88 + ,10 + ,110 + ,4 + ,44 + ,2 + ,22 + ,12 + ,7 + ,11 + ,77 + ,15 + ,105 + ,5 + ,35 + ,2 + ,14 + ,16 + ,11 + ,14 + ,154 + ,15 + ,165 + ,8 + ,88 + ,2 + ,22 + ,10 + ,11 + ,9 + ,99 + ,12 + ,132 + ,4 + ,44 + ,3 + ,33 + ,14 + ,11 + ,10 + ,110 + ,16 + ,176 + ,6 + ,66 + ,2 + ,22 + ,10 + ,11 + ,13 + ,143 + ,15 + ,165 + ,6 + ,66 + ,3 + ,33 + ,16 + ,12 + ,16 + ,192 + ,16 + ,192 + ,7 + ,84 + ,4 + ,48 + ,15 + ,10 + ,16 + ,160 + ,13 + ,130 + ,6 + ,60 + ,3 + ,30 + ,12 + ,11 + ,11 + ,121 + ,12 + ,132 + ,5 + ,55 + ,3 + ,33 + ,10 + ,12 + ,8 + ,96 + ,11 + ,132 + ,4 + ,48 + ,0 + ,0 + ,8 + ,7 + ,4 + ,28 + ,13 + ,91 + ,6 + ,42 + ,1 + ,7 + ,8 + ,13 + ,7 + ,91 + ,10 + ,130 + ,3 + ,39 + ,2 + ,26 + ,11 + ,8 + ,14 + ,112 + ,15 + ,120 + ,5 + ,40 + ,2 + ,16 + ,13 + ,12 + ,11 + ,132 + ,13 + ,156 + ,6 + ,72 + ,3 + ,36 + ,16 + ,11 + ,17 + ,187 + ,16 + ,176 + ,7 + ,77 + ,4 + ,44 + ,16 + ,12 + ,15 + ,180 + ,15 + ,180 + ,7 + ,84 + ,4 + ,48 + ,14 + ,14 + ,17 + ,238 + ,18 + ,252 + ,6 + ,84 + ,1 + ,14 + ,11 + ,10 + ,5 + ,50 + ,13 + ,130 + ,3 + ,30 + ,2 + ,20 + ,4 + ,10 + ,4 + ,40 + ,10 + ,100 + ,2 + ,20 + ,2 + ,20 + ,14 + ,13 + ,10 + ,130 + ,16 + ,208 + ,8 + ,104 + ,3 + ,39 + ,9 + ,10 + ,11 + ,110 + ,13 + ,130 + ,3 + ,30 + ,3 + ,30 + ,14 + ,11 + ,15 + ,165 + ,15 + ,165 + ,8 + ,88 + ,3 + ,33 + ,8 + ,10 + ,10 + ,100 + ,14 + ,140 + ,3 + ,30 + ,1 + ,10 + ,8 + ,7 + ,9 + ,63 + ,15 + ,105 + ,4 + ,28 + ,1 + ,7 + ,11 + ,10 + ,12 + ,120 + ,14 + ,140 + ,5 + ,50 + ,1 + ,10 + ,12 + ,8 + ,15 + ,120 + ,13 + ,104 + ,7 + ,56 + ,1 + ,8 + ,11 + ,12 + ,7 + ,84 + ,13 + ,156 + ,6 + ,72 + ,0 + ,0 + ,14 + ,12 + ,13 + ,156 + ,15 + ,180 + ,6 + ,72 + ,1 + ,12 + ,15 + ,12 + ,12 + ,144 + ,16 + ,192 + ,7 + ,84 + ,3 + ,36 + ,16 + ,11 + ,14 + ,154 + ,14 + ,154 + ,6 + ,66 + ,3 + ,33 + ,16 + ,12 + ,14 + ,168 + ,14 + ,168 + ,6 + ,72 + ,0 + ,0 + ,11 + ,12 + ,8 + ,96 + ,16 + ,192 + ,6 + ,72 + ,2 + ,24 + ,14 + ,12 + ,15 + ,180 + ,14 + ,168 + ,6 + ,72 + ,5 + ,60 + ,14 + ,11 + ,12 + ,132 + ,12 + ,132 + ,4 + ,44 + ,2 + ,22 + ,12 + ,12 + ,12 + ,144 + ,13 + ,156 + ,4 + ,48 + ,3 + ,36 + ,14 + ,11 + ,16 + ,176 + ,12 + ,132 + ,5 + ,55 + ,3 + ,33 + ,8 + ,11 + ,9 + ,99 + ,12 + ,132 + ,4 + ,44 + ,5 + ,55 + ,13 + ,13 + ,15 + ,195 + ,14 + ,182 + ,6 + ,78 + ,4 + ,52 + ,16 + ,12 + ,15 + ,180 + ,14 + ,168 + ,6 + ,72 + ,4 + ,48 + ,12 + ,12 + ,6 + ,72 + ,14 + ,168 + ,5 + ,60 + ,0 + ,0 + ,16 + ,12 + ,14 + ,168 + ,16 + ,192 + ,8 + ,96 + ,3 + ,36 + ,12 + ,12 + ,15 + ,180 + ,13 + ,156 + ,6 + ,72 + ,0 + ,0 + ,11 + ,8 + ,10 + ,80 + ,14 + ,112 + ,5 + ,40 + ,2 + ,16 + ,4 + ,8 + ,6 + ,48 + ,4 + ,32 + ,4 + ,32 + ,0 + ,0 + ,16 + ,12 + ,14 + ,168 + ,16 + ,192 + ,8 + ,96 + ,6 + ,72 + ,15 + ,11 + ,12 + ,132 + ,13 + ,143 + ,6 + ,66 + ,3 + ,33 + ,10 + ,12 + ,8 + ,96 + ,16 + ,192 + ,4 + ,48 + ,1 + ,12 + ,13 + ,13 + ,11 + ,143 + ,15 + ,195 + ,6 + ,78 + ,6 + ,78 + ,15 + ,12 + ,13 + ,156 + ,14 + ,168 + ,6 + ,72 + ,2 + ,24 + ,12 + ,12 + ,9 + ,108 + ,13 + ,156 + ,4 + ,48 + ,1 + ,12 + ,14 + ,11 + ,15 + ,165 + ,14 + ,154 + ,6 + ,66 + ,3 + ,33 + ,7 + ,12 + ,13 + ,156 + ,12 + ,144 + ,3 + ,36 + ,1 + ,12 + ,19 + ,12 + ,15 + ,180 + ,15 + ,180 + ,6 + ,72 + ,2 + ,24 + ,12 + ,10 + ,14 + ,140 + ,14 + ,140 + ,5 + ,50 + ,4 + ,40 + ,12 + ,11 + ,16 + ,176 + ,13 + ,143 + ,4 + ,44 + ,1 + ,11 + ,13 + ,12 + ,14 + ,168 + ,14 + ,168 + ,6 + ,72 + ,2 + ,24 + ,15 + ,12 + ,14 + ,168 + ,16 + ,192 + ,4 + ,48 + ,0 + ,0 + ,8 + ,10 + ,10 + ,100 + ,6 + ,60 + ,4 + ,40 + ,5 + ,50 + ,12 + ,12 + ,10 + ,120 + ,13 + ,156 + ,4 + ,48 + ,2 + ,24 + ,10 + ,13 + ,4 + ,52 + ,13 + ,169 + ,6 + ,78 + ,1 + ,13 + ,8 + ,12 + ,8 + ,96 + ,14 + ,168 + ,5 + ,60 + ,1 + ,12 + ,10 + ,15 + ,15 + ,225 + ,15 + ,225 + ,6 + ,90 + ,4 + ,60 + ,15 + ,11 + ,16 + ,176 + ,14 + ,154 + ,6 + ,66 + ,3 + ,33 + ,16 + ,12 + ,12 + ,144 + ,15 + ,180 + ,8 + ,96 + ,0 + ,0 + ,13 + ,11 + ,12 + ,132 + ,13 + ,143 + ,7 + ,77 + ,3 + ,33 + ,16 + ,12 + ,15 + ,180 + ,16 + ,192 + ,7 + ,84 + ,3 + ,36 + ,9 + ,11 + ,9 + ,99 + ,12 + ,132 + ,4 + ,44 + ,0 + ,0 + ,14 + ,10 + ,12 + ,120 + ,15 + ,150 + ,6 + ,60 + ,2 + ,20 + ,14 + ,11 + ,14 + ,154 + ,12 + ,132 + ,6 + ,66 + ,5 + ,55 + ,12 + ,11 + ,11 + ,121 + ,14 + ,154 + ,2 + ,22 + ,2 + ,22) + ,dim=c(10 + ,156) + ,dimnames=list(c('Popularity' + ,'FindingFriends' + ,'KnowingPeople' + ,'friends_knowning' + ,'Liked' + ,'friends_liked' + ,'Celebrity' + ,'friends_celeb' + ,'Sum' + ,'friends_sum') + ,1:156)) > y <- array(NA,dim=c(10,156),dimnames=list(c('Popularity','FindingFriends','KnowingPeople','friends_knowning','Liked','friends_liked','Celebrity','friends_celeb','Sum','friends_sum'),1:156)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Popularity FindingFriends KnowingPeople friends_knowning Liked 1 13 13 14 182 13 2 12 12 8 96 13 3 15 10 12 120 16 4 12 9 7 63 12 5 10 10 10 100 11 6 12 12 7 84 12 7 15 13 16 208 18 8 9 12 11 132 11 9 12 12 14 168 14 10 11 6 6 36 9 11 11 5 16 80 14 12 11 12 11 132 12 13 15 11 16 176 11 14 7 14 12 168 12 15 11 14 7 98 13 16 11 12 13 156 11 17 10 12 11 132 12 18 14 11 15 165 16 19 10 11 7 77 9 20 6 7 9 63 11 21 11 9 7 63 13 22 15 11 14 154 15 23 11 11 15 165 10 24 12 12 7 84 11 25 14 12 15 180 13 26 15 11 17 187 16 27 9 11 15 165 15 28 13 8 14 112 14 29 13 9 14 126 14 30 16 12 8 96 14 31 13 10 8 80 8 32 12 10 14 140 13 33 14 12 14 168 15 34 11 8 8 64 13 35 9 12 11 132 11 36 16 11 16 176 15 37 12 12 10 120 15 38 10 7 8 56 9 39 13 11 14 154 13 40 16 11 16 176 16 41 14 12 13 156 13 42 15 9 5 45 11 43 5 15 8 120 12 44 8 11 10 110 12 45 11 11 8 88 12 46 16 11 13 143 14 47 17 11 15 165 14 48 9 15 6 90 8 49 9 11 12 132 13 50 13 12 16 192 16 51 10 12 5 60 13 52 6 9 15 135 11 53 12 12 12 144 14 54 8 12 8 96 13 55 14 13 13 169 13 56 12 11 14 154 13 57 11 9 12 108 12 58 16 9 16 144 16 59 8 11 10 110 15 60 15 11 15 165 15 61 7 12 8 96 12 62 16 12 16 192 14 63 14 9 19 171 12 64 16 11 14 154 15 65 9 9 6 54 12 66 14 12 13 156 13 67 11 12 15 180 12 68 13 12 7 84 12 69 15 12 13 156 13 70 5 14 4 56 5 71 15 11 14 154 13 72 13 12 13 156 13 73 11 11 11 121 14 74 11 6 14 84 17 75 12 10 12 120 13 76 12 12 15 180 13 77 12 13 14 182 12 78 12 8 13 104 13 79 14 12 8 96 14 80 6 12 6 72 11 81 7 12 7 84 12 82 14 6 13 78 12 83 14 11 13 143 16 84 10 10 11 110 12 85 13 12 5 60 12 86 12 13 12 156 12 87 9 11 8 88 10 88 12 7 11 77 15 89 16 11 14 154 15 90 10 11 9 99 12 91 14 11 10 110 16 92 10 11 13 143 15 93 16 12 16 192 16 94 15 10 16 160 13 95 12 11 11 121 12 96 10 12 8 96 11 97 8 7 4 28 13 98 8 13 7 91 10 99 11 8 14 112 15 100 13 12 11 132 13 101 16 11 17 187 16 102 16 12 15 180 15 103 14 14 17 238 18 104 11 10 5 50 13 105 4 10 4 40 10 106 14 13 10 130 16 107 9 10 11 110 13 108 14 11 15 165 15 109 8 10 10 100 14 110 8 7 9 63 15 111 11 10 12 120 14 112 12 8 15 120 13 113 11 12 7 84 13 114 14 12 13 156 15 115 15 12 12 144 16 116 16 11 14 154 14 117 16 12 14 168 14 118 11 12 8 96 16 119 14 12 15 180 14 120 14 11 12 132 12 121 12 12 12 144 13 122 14 11 16 176 12 123 8 11 9 99 12 124 13 13 15 195 14 125 16 12 15 180 14 126 12 12 6 72 14 127 16 12 14 168 16 128 12 12 15 180 13 129 11 8 10 80 14 130 4 8 6 48 4 131 16 12 14 168 16 132 15 11 12 132 13 133 10 12 8 96 16 134 13 13 11 143 15 135 15 12 13 156 14 136 12 12 9 108 13 137 14 11 15 165 14 138 7 12 13 156 12 139 19 12 15 180 15 140 12 10 14 140 14 141 12 11 16 176 13 142 13 12 14 168 14 143 15 12 14 168 16 144 8 10 10 100 6 145 12 12 10 120 13 146 10 13 4 52 13 147 8 12 8 96 14 148 10 15 15 225 15 149 15 11 16 176 14 150 16 12 12 144 15 151 13 11 12 132 13 152 16 12 15 180 16 153 9 11 9 99 12 154 14 10 12 120 15 155 14 11 14 154 12 156 12 11 11 121 14 friends_liked Celebrity friends_celeb Sum friends_sum 1 169 3 39 2 26 2 156 5 60 1 12 3 160 6 60 0 0 4 108 6 54 3 27 5 110 5 50 3 30 6 144 3 36 1 12 7 234 8 104 3 39 8 132 4 48 1 12 9 168 4 48 4 48 10 54 4 24 0 0 11 70 6 30 3 15 12 144 6 72 2 24 13 121 5 55 4 44 14 168 4 56 3 42 15 182 6 84 1 14 16 132 4 48 1 12 17 144 6 72 2 24 18 176 6 66 3 33 19 99 4 44 1 11 20 77 4 28 1 7 21 117 2 18 2 18 22 165 7 77 3 33 23 110 5 55 4 44 24 132 4 48 2 24 25 156 6 72 1 12 26 176 6 66 2 22 27 165 7 77 2 22 28 112 5 40 4 32 29 126 6 54 2 18 30 168 4 48 3 36 31 80 4 40 3 30 32 130 7 70 3 30 33 180 7 84 4 48 34 104 4 32 2 16 35 132 4 48 2 24 36 165 6 66 4 44 37 180 6 72 3 36 38 63 5 35 4 28 39 143 6 66 2 22 40 176 7 77 5 55 41 156 6 72 3 36 42 99 3 27 1 9 43 180 3 45 1 15 44 132 4 44 1 11 45 132 6 66 2 22 46 154 7 77 3 33 47 154 5 55 9 99 48 120 4 60 0 0 49 143 5 55 0 0 50 192 6 72 2 24 51 156 6 72 2 24 52 99 6 54 3 27 53 168 5 60 1 12 54 156 4 48 2 24 55 169 5 65 0 0 56 143 5 55 5 55 57 108 4 36 2 18 58 144 6 54 4 36 59 165 2 22 3 33 60 165 8 88 0 0 61 144 3 36 0 0 62 168 6 72 4 48 63 108 6 54 1 9 64 165 6 66 1 11 65 108 5 45 4 36 66 156 5 60 2 24 67 144 6 72 4 48 68 144 5 60 1 12 69 156 6 72 4 48 70 70 2 28 2 28 71 143 5 55 5 55 72 156 5 60 4 48 73 154 5 55 4 44 74 102 6 36 4 24 75 130 6 60 4 40 76 156 6 72 3 36 77 156 5 65 3 39 78 104 5 40 3 24 79 168 4 48 2 24 80 132 2 24 1 12 81 144 4 48 1 12 82 72 6 36 5 30 83 176 6 66 4 44 84 120 5 50 2 20 85 144 3 36 3 36 86 156 6 78 2 26 87 110 4 44 2 22 88 105 5 35 2 14 89 165 8 88 2 22 90 132 4 44 3 33 91 176 6 66 2 22 92 165 6 66 3 33 93 192 7 84 4 48 94 130 6 60 3 30 95 132 5 55 3 33 96 132 4 48 0 0 97 91 6 42 1 7 98 130 3 39 2 26 99 120 5 40 2 16 100 156 6 72 3 36 101 176 7 77 4 44 102 180 7 84 4 48 103 252 6 84 1 14 104 130 3 30 2 20 105 100 2 20 2 20 106 208 8 104 3 39 107 130 3 30 3 30 108 165 8 88 3 33 109 140 3 30 1 10 110 105 4 28 1 7 111 140 5 50 1 10 112 104 7 56 1 8 113 156 6 72 0 0 114 180 6 72 1 12 115 192 7 84 3 36 116 154 6 66 3 33 117 168 6 72 0 0 118 192 6 72 2 24 119 168 6 72 5 60 120 132 4 44 2 22 121 156 4 48 3 36 122 132 5 55 3 33 123 132 4 44 5 55 124 182 6 78 4 52 125 168 6 72 4 48 126 168 5 60 0 0 127 192 8 96 3 36 128 156 6 72 0 0 129 112 5 40 2 16 130 32 4 32 0 0 131 192 8 96 6 72 132 143 6 66 3 33 133 192 4 48 1 12 134 195 6 78 6 78 135 168 6 72 2 24 136 156 4 48 1 12 137 154 6 66 3 33 138 144 3 36 1 12 139 180 6 72 2 24 140 140 5 50 4 40 141 143 4 44 1 11 142 168 6 72 2 24 143 192 4 48 0 0 144 60 4 40 5 50 145 156 4 48 2 24 146 169 6 78 1 13 147 168 5 60 1 12 148 225 6 90 4 60 149 154 6 66 3 33 150 180 8 96 0 0 151 143 7 77 3 33 152 192 7 84 3 36 153 132 4 44 0 0 154 150 6 60 2 20 155 132 6 66 5 55 156 154 2 22 2 22 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) FindingFriends KnowingPeople friends_knowning 7.13071 -0.50107 0.01444 0.01959 Liked friends_liked Celebrity friends_celeb 0.45337 -0.01193 -1.04257 0.14673 Sum friends_sum 1.14069 -0.08459 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -6.094934 -1.211309 -0.007295 1.355010 6.405574 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.13071 5.61803 1.269 0.206 FindingFriends -0.50107 0.49329 -1.016 0.311 KnowingPeople 0.01444 0.39969 0.036 0.971 friends_knowning 0.01959 0.03578 0.548 0.585 Liked 0.45337 0.50207 0.903 0.368 friends_liked -0.01193 0.04708 -0.253 0.800 Celebrity -1.04257 1.20995 -0.862 0.390 friends_celeb 0.14673 0.10719 1.369 0.173 Sum 1.14069 0.84142 1.356 0.177 friends_sum -0.08459 0.07532 -1.123 0.263 Residual standard error: 2.094 on 146 degrees of freedom Multiple R-squared: 0.5213, Adjusted R-squared: 0.4918 F-statistic: 17.66 on 9 and 146 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.7898568 0.42028649 0.21014325 [2,] 0.7942903 0.41141949 0.20570974 [3,] 0.7202811 0.55943784 0.27971892 [4,] 0.6523604 0.69527913 0.34763957 [5,] 0.5596470 0.88070596 0.44035298 [6,] 0.4616115 0.92322306 0.53838847 [7,] 0.3668003 0.73360059 0.63319971 [8,] 0.7874859 0.42502818 0.21251409 [9,] 0.7466493 0.50670149 0.25335075 [10,] 0.7155049 0.56899025 0.28449513 [11,] 0.6495913 0.70081737 0.35040868 [12,] 0.6776320 0.64473600 0.32236800 [13,] 0.6120637 0.77587266 0.38793633 [14,] 0.5424018 0.91519648 0.45759824 [15,] 0.7794512 0.44109769 0.22054884 [16,] 0.7229351 0.55412987 0.27706494 [17,] 0.6736304 0.65273920 0.32636960 [18,] 0.8204146 0.35917086 0.17958543 [19,] 0.8636023 0.27279542 0.13639771 [20,] 0.8295369 0.34092624 0.17046312 [21,] 0.7938871 0.41222572 0.20611286 [22,] 0.7480112 0.50397758 0.25198879 [23,] 0.7267026 0.54659472 0.27329736 [24,] 0.7295595 0.54088096 0.27044048 [25,] 0.6969631 0.60607371 0.30303685 [26,] 0.7141915 0.57161696 0.28580848 [27,] 0.6703876 0.65922487 0.32961244 [28,] 0.6315973 0.73680545 0.36840272 [29,] 0.5998466 0.80030676 0.40015338 [30,] 0.8589059 0.28218823 0.14109412 [31,] 0.9440002 0.11199968 0.05599984 [32,] 0.9491198 0.10176031 0.05088015 [33,] 0.9338428 0.13231445 0.06615722 [34,] 0.9399473 0.12010544 0.06005272 [35,] 0.9347969 0.13040620 0.06520310 [36,] 0.9207704 0.15845919 0.07922960 [37,] 0.9190128 0.16197439 0.08098719 [38,] 0.9059598 0.18808036 0.09404018 [39,] 0.8948115 0.21037698 0.10518849 [40,] 0.9781575 0.04368506 0.02184253 [41,] 0.9711648 0.05767032 0.02883516 [42,] 0.9766734 0.04665324 0.02332662 [43,] 0.9785812 0.04283762 0.02141881 [44,] 0.9738782 0.05224360 0.02612180 [45,] 0.9658585 0.06828296 0.03414148 [46,] 0.9594752 0.08104965 0.04052482 [47,] 0.9722120 0.05557605 0.02778802 [48,] 0.9669890 0.06602208 0.03301104 [49,] 0.9664756 0.06704877 0.03352438 [50,] 0.9637196 0.07256083 0.03628041 [51,] 0.9751667 0.04966658 0.02483329 [52,] 0.9795250 0.04095001 0.02047501 [53,] 0.9799913 0.04001733 0.02000866 [54,] 0.9780335 0.04393293 0.02196647 [55,] 0.9810279 0.03794420 0.01897210 [56,] 0.9846394 0.03072129 0.01536065 [57,] 0.9832587 0.03348252 0.01674126 [58,] 0.9784648 0.04307038 0.02153519 [59,] 0.9784388 0.04312249 0.02156124 [60,] 0.9717362 0.05652753 0.02826377 [61,] 0.9672293 0.06554136 0.03277068 [62,] 0.9831713 0.03365731 0.01682865 [63,] 0.9786315 0.04273701 0.02136850 [64,] 0.9763568 0.04728634 0.02364317 [65,] 0.9693360 0.06132807 0.03066404 [66,] 0.9599078 0.08018448 0.04009224 [67,] 0.9748721 0.05025573 0.02512786 [68,] 0.9735243 0.05295143 0.02647571 [69,] 0.9797943 0.04041131 0.02020565 [70,] 0.9793872 0.04122557 0.02061278 [71,] 0.9726502 0.05469951 0.02734976 [72,] 0.9671766 0.06564681 0.03282340 [73,] 0.9897074 0.02058517 0.01029259 [74,] 0.9864938 0.02701237 0.01350619 [75,] 0.9818999 0.03620015 0.01810007 [76,] 0.9757554 0.04848919 0.02424459 [77,] 0.9703204 0.05935912 0.02967956 [78,] 0.9616353 0.07672942 0.03836471 [79,] 0.9534948 0.09301044 0.04650522 [80,] 0.9774567 0.04508662 0.02254331 [81,] 0.9699903 0.06001935 0.03000967 [82,] 0.9644199 0.07116027 0.03558014 [83,] 0.9537787 0.09244261 0.04622131 [84,] 0.9406498 0.11870041 0.05935021 [85,] 0.9277892 0.14442153 0.07221076 [86,] 0.9101137 0.17977266 0.08988633 [87,] 0.9071066 0.18578678 0.09289339 [88,] 0.8846071 0.23078584 0.11539292 [89,] 0.8606154 0.27876928 0.13938464 [90,] 0.8358716 0.32825687 0.16412843 [91,] 0.8757965 0.24840704 0.12420352 [92,] 0.9143596 0.17128081 0.08564040 [93,] 0.9250435 0.14991291 0.07495646 [94,] 0.9094358 0.18112846 0.09056423 [95,] 0.9058587 0.18828255 0.09414128 [96,] 0.9101649 0.17967028 0.08983514 [97,] 0.9088653 0.18226946 0.09113473 [98,] 0.9012212 0.19755767 0.09877884 [99,] 0.8860253 0.22794941 0.11397471 [100,] 0.8999151 0.20016989 0.10008494 [101,] 0.8717776 0.25644486 0.12822243 [102,] 0.8410652 0.31786957 0.15893478 [103,] 0.8028144 0.39437120 0.19718560 [104,] 0.7922882 0.41542362 0.20771181 [105,] 0.8010632 0.39787357 0.19893679 [106,] 0.7928509 0.41429828 0.20714914 [107,] 0.7457259 0.50854819 0.25427409 [108,] 0.8158713 0.36825731 0.18412865 [109,] 0.7834726 0.43305479 0.21652740 [110,] 0.7396007 0.52079866 0.26039933 [111,] 0.7317013 0.53659749 0.26829874 [112,] 0.6771872 0.64562551 0.32281275 [113,] 0.6825766 0.63484681 0.31742341 [114,] 0.6522920 0.69541592 0.34770796 [115,] 0.5889595 0.82208107 0.41104053 [116,] 0.5521664 0.89566716 0.44783358 [117,] 0.4990352 0.99807048 0.50096476 [118,] 0.4449438 0.88988762 0.55505619 [119,] 0.3749814 0.74996284 0.62501858 [120,] 0.3753661 0.75073222 0.62463389 [121,] 0.3754716 0.75094317 0.62452842 [122,] 0.3350051 0.67001020 0.66499490 [123,] 0.2998500 0.59969994 0.70015003 [124,] 0.3010402 0.60208035 0.69895983 [125,] 0.2265020 0.45300398 0.77349801 [126,] 0.3514909 0.70298182 0.64850909 [127,] 0.6180005 0.76399905 0.38199952 [128,] 0.8133173 0.37336535 0.18668268 [129,] 0.7460326 0.50793474 0.25396737 [130,] 0.7195342 0.56093150 0.28046575 [131,] 0.6100578 0.77988447 0.38994224 > postscript(file="/var/www/html/freestat/rcomp/tmp/14qnf1293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/2eh4i1293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/3eh4i1293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/4eh4i1293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/5p8ml1293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 156 Frequency = 1 1 2 3 4 5 6 2.06067378 1.13624278 2.46191564 1.08520968 -0.90658378 3.13245119 7 8 9 10 11 12 -2.33481985 -1.27373775 -0.32981459 3.29630419 -1.23565699 -1.14600206 13 14 15 16 17 18 2.45999256 -3.93277528 -0.88603113 0.22717324 -2.14600206 -0.28207432 19 20 21 22 23 24 1.37591801 -3.54277687 1.23068423 0.69852985 -0.98791126 2.59883987 25 26 27 28 29 30 0.67120629 0.46821203 -5.32123134 -0.04201614 0.43719786 5.29305286 31 32 33 34 35 36 3.94111639 -1.26569045 -0.79470343 0.40219561 -1.39933816 1.59992566 37 38 39 40 41 42 -0.95270005 -0.28169210 0.12450058 0.49609865 0.91909448 6.40557404 43 44 45 46 47 48 -3.72145244 -2.28037055 -0.17364092 2.25062603 2.67255747 0.70629274 49 50 51 52 53 54 -2.42371993 -1.63458071 -0.95894904 -6.09493419 -0.17214927 -2.27113269 55 56 57 58 59 60 1.68191371 -0.93458124 0.06679315 1.60490889 -2.52420024 0.52765921 61 62 63 64 65 66 -1.99149290 1.73464652 1.55473522 2.69040442 -1.82536878 1.76291983 67 68 69 70 71 72 -2.39538092 2.69600132 1.79349407 0.36133623 2.06541876 0.51171900 73 74 75 76 77 78 -1.35667629 -3.02220841 -0.71499267 -1.57999453 -0.41196716 -0.04894314 79 80 81 82 83 84 3.41865328 -1.58956534 -2.58577375 1.38559920 -0.03236067 -1.15623547 85 86 87 88 89 90 4.38033938 -0.69764237 -0.38636945 0.14148952 1.33722911 -0.47080064 91 92 93 94 95 96 1.07787927 -3.50002568 0.39599353 1.73834780 0.49780243 0.60049619 97 98 99 100 101 102 -1.49370109 -0.16051736 -1.47202121 0.41818350 0.47633746 0.95575206 103 104 105 106 107 108 -2.20509030 1.62137180 -3.74128845 -1.12343187 -1.93557285 -1.10291463 109 110 111 112 113 114 -2.46972157 -3.02222686 -0.73996058 0.27404546 -0.20683723 0.54986725 115 116 117 118 119 120 0.51977197 2.59216558 2.73613719 -1.63822465 -0.14140939 3.04953325 121 122 123 124 125 126 0.60508886 1.34804011 -2.89118319 -1.18363979 1.98419103 1.45071818 127 128 129 130 131 132 0.30245802 -1.20319329 -0.42938309 -2.10612877 -0.07434322 2.37421423 133 134 135 136 137 138 -1.07617436 -0.48739702 1.73448087 1.60492321 0.36221312 -3.36481585 139 140 141 142 143 144 4.92517783 -1.04502783 0.01777096 -0.51506364 2.55215901 -1.40102189 145 146 147 148 149 150 1.22977829 -0.80182473 -3.17397124 -4.79372637 1.13226066 1.48856230 151 152 153 154 155 156 -0.19727778 0.77113845 -0.84022681 1.20642478 0.81607047 1.77818230 > postscript(file="/var/www/html/freestat/rcomp/tmp/6p8ml1293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 156 Frequency = 1 lag(myerror, k = 1) myerror 0 2.06067378 NA 1 1.13624278 2.06067378 2 2.46191564 1.13624278 3 1.08520968 2.46191564 4 -0.90658378 1.08520968 5 3.13245119 -0.90658378 6 -2.33481985 3.13245119 7 -1.27373775 -2.33481985 8 -0.32981459 -1.27373775 9 3.29630419 -0.32981459 10 -1.23565699 3.29630419 11 -1.14600206 -1.23565699 12 2.45999256 -1.14600206 13 -3.93277528 2.45999256 14 -0.88603113 -3.93277528 15 0.22717324 -0.88603113 16 -2.14600206 0.22717324 17 -0.28207432 -2.14600206 18 1.37591801 -0.28207432 19 -3.54277687 1.37591801 20 1.23068423 -3.54277687 21 0.69852985 1.23068423 22 -0.98791126 0.69852985 23 2.59883987 -0.98791126 24 0.67120629 2.59883987 25 0.46821203 0.67120629 26 -5.32123134 0.46821203 27 -0.04201614 -5.32123134 28 0.43719786 -0.04201614 29 5.29305286 0.43719786 30 3.94111639 5.29305286 31 -1.26569045 3.94111639 32 -0.79470343 -1.26569045 33 0.40219561 -0.79470343 34 -1.39933816 0.40219561 35 1.59992566 -1.39933816 36 -0.95270005 1.59992566 37 -0.28169210 -0.95270005 38 0.12450058 -0.28169210 39 0.49609865 0.12450058 40 0.91909448 0.49609865 41 6.40557404 0.91909448 42 -3.72145244 6.40557404 43 -2.28037055 -3.72145244 44 -0.17364092 -2.28037055 45 2.25062603 -0.17364092 46 2.67255747 2.25062603 47 0.70629274 2.67255747 48 -2.42371993 0.70629274 49 -1.63458071 -2.42371993 50 -0.95894904 -1.63458071 51 -6.09493419 -0.95894904 52 -0.17214927 -6.09493419 53 -2.27113269 -0.17214927 54 1.68191371 -2.27113269 55 -0.93458124 1.68191371 56 0.06679315 -0.93458124 57 1.60490889 0.06679315 58 -2.52420024 1.60490889 59 0.52765921 -2.52420024 60 -1.99149290 0.52765921 61 1.73464652 -1.99149290 62 1.55473522 1.73464652 63 2.69040442 1.55473522 64 -1.82536878 2.69040442 65 1.76291983 -1.82536878 66 -2.39538092 1.76291983 67 2.69600132 -2.39538092 68 1.79349407 2.69600132 69 0.36133623 1.79349407 70 2.06541876 0.36133623 71 0.51171900 2.06541876 72 -1.35667629 0.51171900 73 -3.02220841 -1.35667629 74 -0.71499267 -3.02220841 75 -1.57999453 -0.71499267 76 -0.41196716 -1.57999453 77 -0.04894314 -0.41196716 78 3.41865328 -0.04894314 79 -1.58956534 3.41865328 80 -2.58577375 -1.58956534 81 1.38559920 -2.58577375 82 -0.03236067 1.38559920 83 -1.15623547 -0.03236067 84 4.38033938 -1.15623547 85 -0.69764237 4.38033938 86 -0.38636945 -0.69764237 87 0.14148952 -0.38636945 88 1.33722911 0.14148952 89 -0.47080064 1.33722911 90 1.07787927 -0.47080064 91 -3.50002568 1.07787927 92 0.39599353 -3.50002568 93 1.73834780 0.39599353 94 0.49780243 1.73834780 95 0.60049619 0.49780243 96 -1.49370109 0.60049619 97 -0.16051736 -1.49370109 98 -1.47202121 -0.16051736 99 0.41818350 -1.47202121 100 0.47633746 0.41818350 101 0.95575206 0.47633746 102 -2.20509030 0.95575206 103 1.62137180 -2.20509030 104 -3.74128845 1.62137180 105 -1.12343187 -3.74128845 106 -1.93557285 -1.12343187 107 -1.10291463 -1.93557285 108 -2.46972157 -1.10291463 109 -3.02222686 -2.46972157 110 -0.73996058 -3.02222686 111 0.27404546 -0.73996058 112 -0.20683723 0.27404546 113 0.54986725 -0.20683723 114 0.51977197 0.54986725 115 2.59216558 0.51977197 116 2.73613719 2.59216558 117 -1.63822465 2.73613719 118 -0.14140939 -1.63822465 119 3.04953325 -0.14140939 120 0.60508886 3.04953325 121 1.34804011 0.60508886 122 -2.89118319 1.34804011 123 -1.18363979 -2.89118319 124 1.98419103 -1.18363979 125 1.45071818 1.98419103 126 0.30245802 1.45071818 127 -1.20319329 0.30245802 128 -0.42938309 -1.20319329 129 -2.10612877 -0.42938309 130 -0.07434322 -2.10612877 131 2.37421423 -0.07434322 132 -1.07617436 2.37421423 133 -0.48739702 -1.07617436 134 1.73448087 -0.48739702 135 1.60492321 1.73448087 136 0.36221312 1.60492321 137 -3.36481585 0.36221312 138 4.92517783 -3.36481585 139 -1.04502783 4.92517783 140 0.01777096 -1.04502783 141 -0.51506364 0.01777096 142 2.55215901 -0.51506364 143 -1.40102189 2.55215901 144 1.22977829 -1.40102189 145 -0.80182473 1.22977829 146 -3.17397124 -0.80182473 147 -4.79372637 -3.17397124 148 1.13226066 -4.79372637 149 1.48856230 1.13226066 150 -0.19727778 1.48856230 151 0.77113845 -0.19727778 152 -0.84022681 0.77113845 153 1.20642478 -0.84022681 154 0.81607047 1.20642478 155 1.77818230 0.81607047 156 NA 1.77818230 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 1.13624278 2.06067378 [2,] 2.46191564 1.13624278 [3,] 1.08520968 2.46191564 [4,] -0.90658378 1.08520968 [5,] 3.13245119 -0.90658378 [6,] -2.33481985 3.13245119 [7,] -1.27373775 -2.33481985 [8,] -0.32981459 -1.27373775 [9,] 3.29630419 -0.32981459 [10,] -1.23565699 3.29630419 [11,] -1.14600206 -1.23565699 [12,] 2.45999256 -1.14600206 [13,] -3.93277528 2.45999256 [14,] -0.88603113 -3.93277528 [15,] 0.22717324 -0.88603113 [16,] -2.14600206 0.22717324 [17,] -0.28207432 -2.14600206 [18,] 1.37591801 -0.28207432 [19,] -3.54277687 1.37591801 [20,] 1.23068423 -3.54277687 [21,] 0.69852985 1.23068423 [22,] -0.98791126 0.69852985 [23,] 2.59883987 -0.98791126 [24,] 0.67120629 2.59883987 [25,] 0.46821203 0.67120629 [26,] -5.32123134 0.46821203 [27,] -0.04201614 -5.32123134 [28,] 0.43719786 -0.04201614 [29,] 5.29305286 0.43719786 [30,] 3.94111639 5.29305286 [31,] -1.26569045 3.94111639 [32,] -0.79470343 -1.26569045 [33,] 0.40219561 -0.79470343 [34,] -1.39933816 0.40219561 [35,] 1.59992566 -1.39933816 [36,] -0.95270005 1.59992566 [37,] -0.28169210 -0.95270005 [38,] 0.12450058 -0.28169210 [39,] 0.49609865 0.12450058 [40,] 0.91909448 0.49609865 [41,] 6.40557404 0.91909448 [42,] -3.72145244 6.40557404 [43,] -2.28037055 -3.72145244 [44,] -0.17364092 -2.28037055 [45,] 2.25062603 -0.17364092 [46,] 2.67255747 2.25062603 [47,] 0.70629274 2.67255747 [48,] -2.42371993 0.70629274 [49,] -1.63458071 -2.42371993 [50,] -0.95894904 -1.63458071 [51,] -6.09493419 -0.95894904 [52,] -0.17214927 -6.09493419 [53,] -2.27113269 -0.17214927 [54,] 1.68191371 -2.27113269 [55,] -0.93458124 1.68191371 [56,] 0.06679315 -0.93458124 [57,] 1.60490889 0.06679315 [58,] -2.52420024 1.60490889 [59,] 0.52765921 -2.52420024 [60,] -1.99149290 0.52765921 [61,] 1.73464652 -1.99149290 [62,] 1.55473522 1.73464652 [63,] 2.69040442 1.55473522 [64,] -1.82536878 2.69040442 [65,] 1.76291983 -1.82536878 [66,] -2.39538092 1.76291983 [67,] 2.69600132 -2.39538092 [68,] 1.79349407 2.69600132 [69,] 0.36133623 1.79349407 [70,] 2.06541876 0.36133623 [71,] 0.51171900 2.06541876 [72,] -1.35667629 0.51171900 [73,] -3.02220841 -1.35667629 [74,] -0.71499267 -3.02220841 [75,] -1.57999453 -0.71499267 [76,] -0.41196716 -1.57999453 [77,] -0.04894314 -0.41196716 [78,] 3.41865328 -0.04894314 [79,] -1.58956534 3.41865328 [80,] -2.58577375 -1.58956534 [81,] 1.38559920 -2.58577375 [82,] -0.03236067 1.38559920 [83,] -1.15623547 -0.03236067 [84,] 4.38033938 -1.15623547 [85,] -0.69764237 4.38033938 [86,] -0.38636945 -0.69764237 [87,] 0.14148952 -0.38636945 [88,] 1.33722911 0.14148952 [89,] -0.47080064 1.33722911 [90,] 1.07787927 -0.47080064 [91,] -3.50002568 1.07787927 [92,] 0.39599353 -3.50002568 [93,] 1.73834780 0.39599353 [94,] 0.49780243 1.73834780 [95,] 0.60049619 0.49780243 [96,] -1.49370109 0.60049619 [97,] -0.16051736 -1.49370109 [98,] -1.47202121 -0.16051736 [99,] 0.41818350 -1.47202121 [100,] 0.47633746 0.41818350 [101,] 0.95575206 0.47633746 [102,] -2.20509030 0.95575206 [103,] 1.62137180 -2.20509030 [104,] -3.74128845 1.62137180 [105,] -1.12343187 -3.74128845 [106,] -1.93557285 -1.12343187 [107,] -1.10291463 -1.93557285 [108,] -2.46972157 -1.10291463 [109,] -3.02222686 -2.46972157 [110,] -0.73996058 -3.02222686 [111,] 0.27404546 -0.73996058 [112,] -0.20683723 0.27404546 [113,] 0.54986725 -0.20683723 [114,] 0.51977197 0.54986725 [115,] 2.59216558 0.51977197 [116,] 2.73613719 2.59216558 [117,] -1.63822465 2.73613719 [118,] -0.14140939 -1.63822465 [119,] 3.04953325 -0.14140939 [120,] 0.60508886 3.04953325 [121,] 1.34804011 0.60508886 [122,] -2.89118319 1.34804011 [123,] -1.18363979 -2.89118319 [124,] 1.98419103 -1.18363979 [125,] 1.45071818 1.98419103 [126,] 0.30245802 1.45071818 [127,] -1.20319329 0.30245802 [128,] -0.42938309 -1.20319329 [129,] -2.10612877 -0.42938309 [130,] -0.07434322 -2.10612877 [131,] 2.37421423 -0.07434322 [132,] -1.07617436 2.37421423 [133,] -0.48739702 -1.07617436 [134,] 1.73448087 -0.48739702 [135,] 1.60492321 1.73448087 [136,] 0.36221312 1.60492321 [137,] -3.36481585 0.36221312 [138,] 4.92517783 -3.36481585 [139,] -1.04502783 4.92517783 [140,] 0.01777096 -1.04502783 [141,] -0.51506364 0.01777096 [142,] 2.55215901 -0.51506364 [143,] -1.40102189 2.55215901 [144,] 1.22977829 -1.40102189 [145,] -0.80182473 1.22977829 [146,] -3.17397124 -0.80182473 [147,] -4.79372637 -3.17397124 [148,] 1.13226066 -4.79372637 [149,] 1.48856230 1.13226066 [150,] -0.19727778 1.48856230 [151,] 0.77113845 -0.19727778 [152,] -0.84022681 0.77113845 [153,] 1.20642478 -0.84022681 [154,] 0.81607047 1.20642478 [155,] 1.77818230 0.81607047 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 1.13624278 2.06067378 2 2.46191564 1.13624278 3 1.08520968 2.46191564 4 -0.90658378 1.08520968 5 3.13245119 -0.90658378 6 -2.33481985 3.13245119 7 -1.27373775 -2.33481985 8 -0.32981459 -1.27373775 9 3.29630419 -0.32981459 10 -1.23565699 3.29630419 11 -1.14600206 -1.23565699 12 2.45999256 -1.14600206 13 -3.93277528 2.45999256 14 -0.88603113 -3.93277528 15 0.22717324 -0.88603113 16 -2.14600206 0.22717324 17 -0.28207432 -2.14600206 18 1.37591801 -0.28207432 19 -3.54277687 1.37591801 20 1.23068423 -3.54277687 21 0.69852985 1.23068423 22 -0.98791126 0.69852985 23 2.59883987 -0.98791126 24 0.67120629 2.59883987 25 0.46821203 0.67120629 26 -5.32123134 0.46821203 27 -0.04201614 -5.32123134 28 0.43719786 -0.04201614 29 5.29305286 0.43719786 30 3.94111639 5.29305286 31 -1.26569045 3.94111639 32 -0.79470343 -1.26569045 33 0.40219561 -0.79470343 34 -1.39933816 0.40219561 35 1.59992566 -1.39933816 36 -0.95270005 1.59992566 37 -0.28169210 -0.95270005 38 0.12450058 -0.28169210 39 0.49609865 0.12450058 40 0.91909448 0.49609865 41 6.40557404 0.91909448 42 -3.72145244 6.40557404 43 -2.28037055 -3.72145244 44 -0.17364092 -2.28037055 45 2.25062603 -0.17364092 46 2.67255747 2.25062603 47 0.70629274 2.67255747 48 -2.42371993 0.70629274 49 -1.63458071 -2.42371993 50 -0.95894904 -1.63458071 51 -6.09493419 -0.95894904 52 -0.17214927 -6.09493419 53 -2.27113269 -0.17214927 54 1.68191371 -2.27113269 55 -0.93458124 1.68191371 56 0.06679315 -0.93458124 57 1.60490889 0.06679315 58 -2.52420024 1.60490889 59 0.52765921 -2.52420024 60 -1.99149290 0.52765921 61 1.73464652 -1.99149290 62 1.55473522 1.73464652 63 2.69040442 1.55473522 64 -1.82536878 2.69040442 65 1.76291983 -1.82536878 66 -2.39538092 1.76291983 67 2.69600132 -2.39538092 68 1.79349407 2.69600132 69 0.36133623 1.79349407 70 2.06541876 0.36133623 71 0.51171900 2.06541876 72 -1.35667629 0.51171900 73 -3.02220841 -1.35667629 74 -0.71499267 -3.02220841 75 -1.57999453 -0.71499267 76 -0.41196716 -1.57999453 77 -0.04894314 -0.41196716 78 3.41865328 -0.04894314 79 -1.58956534 3.41865328 80 -2.58577375 -1.58956534 81 1.38559920 -2.58577375 82 -0.03236067 1.38559920 83 -1.15623547 -0.03236067 84 4.38033938 -1.15623547 85 -0.69764237 4.38033938 86 -0.38636945 -0.69764237 87 0.14148952 -0.38636945 88 1.33722911 0.14148952 89 -0.47080064 1.33722911 90 1.07787927 -0.47080064 91 -3.50002568 1.07787927 92 0.39599353 -3.50002568 93 1.73834780 0.39599353 94 0.49780243 1.73834780 95 0.60049619 0.49780243 96 -1.49370109 0.60049619 97 -0.16051736 -1.49370109 98 -1.47202121 -0.16051736 99 0.41818350 -1.47202121 100 0.47633746 0.41818350 101 0.95575206 0.47633746 102 -2.20509030 0.95575206 103 1.62137180 -2.20509030 104 -3.74128845 1.62137180 105 -1.12343187 -3.74128845 106 -1.93557285 -1.12343187 107 -1.10291463 -1.93557285 108 -2.46972157 -1.10291463 109 -3.02222686 -2.46972157 110 -0.73996058 -3.02222686 111 0.27404546 -0.73996058 112 -0.20683723 0.27404546 113 0.54986725 -0.20683723 114 0.51977197 0.54986725 115 2.59216558 0.51977197 116 2.73613719 2.59216558 117 -1.63822465 2.73613719 118 -0.14140939 -1.63822465 119 3.04953325 -0.14140939 120 0.60508886 3.04953325 121 1.34804011 0.60508886 122 -2.89118319 1.34804011 123 -1.18363979 -2.89118319 124 1.98419103 -1.18363979 125 1.45071818 1.98419103 126 0.30245802 1.45071818 127 -1.20319329 0.30245802 128 -0.42938309 -1.20319329 129 -2.10612877 -0.42938309 130 -0.07434322 -2.10612877 131 2.37421423 -0.07434322 132 -1.07617436 2.37421423 133 -0.48739702 -1.07617436 134 1.73448087 -0.48739702 135 1.60492321 1.73448087 136 0.36221312 1.60492321 137 -3.36481585 0.36221312 138 4.92517783 -3.36481585 139 -1.04502783 4.92517783 140 0.01777096 -1.04502783 141 -0.51506364 0.01777096 142 2.55215901 -0.51506364 143 -1.40102189 2.55215901 144 1.22977829 -1.40102189 145 -0.80182473 1.22977829 146 -3.17397124 -0.80182473 147 -4.79372637 -3.17397124 148 1.13226066 -4.79372637 149 1.48856230 1.13226066 150 -0.19727778 1.48856230 151 0.77113845 -0.19727778 152 -0.84022681 0.77113845 153 1.20642478 -0.84022681 154 0.81607047 1.20642478 155 1.77818230 0.81607047 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/7iz361293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/8iz361293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/html/freestat/rcomp/tmp/9br281293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/html/freestat/rcomp/tmp/10br281293622594.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/html/freestat/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/freestat/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/11erje1293622594.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/12haz21293622594.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/13w1xt1293622594.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/14zkvh1293622594.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/html/freestat/rcomp/tmp/152lu51293622594.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/html/freestat/rcomp/tmp/16o3sb1293622594.tab") + } > > try(system("convert tmp/14qnf1293622594.ps tmp/14qnf1293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/2eh4i1293622594.ps tmp/2eh4i1293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/3eh4i1293622594.ps tmp/3eh4i1293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/4eh4i1293622594.ps tmp/4eh4i1293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/5p8ml1293622594.ps tmp/5p8ml1293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/6p8ml1293622594.ps tmp/6p8ml1293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/7iz361293622594.ps tmp/7iz361293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/8iz361293622594.ps tmp/8iz361293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/9br281293622594.ps tmp/9br281293622594.png",intern=TRUE)) character(0) > try(system("convert tmp/10br281293622594.ps tmp/10br281293622594.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 6.210 2.717 6.567