R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(8.2,8.21,8.22,8.2,8.18,8.2,8.19,8.24,8.31,8.27,8.36,8.32,8.29,8.27,8.27,8.43,8.46,8.48,8.46,8.46,8.43,8.4,8.38,8.3,8.39,8.53,8.52,8.54,8.62,8.52,8.49,8.44,8.31,8.26,8.21,8.03,7.89,7.83,7.85,7.84,7.88,8.01,8.08,8.11,8.11,8.07,8.06,7.95,7.95,8.07,8.17,8.21,8.2,8.19,8.18,8.16,8.17,8.17,8.19,8.01,8.04,8.13,8.14,8.17,8.25,8.27,8.27,8.26,8.24,8.21,8.25,8.06,8.16,8.32,8.43,8.39,8.41) > par3 = 'additive' > par2 = 'Triple' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2010), Exponential Smoothing (v1.0.4) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_exponentialsmoothing.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) > if (par2 == 'Single') K <- 1 > if (par2 == 'Double') K <- 2 > if (par2 == 'Triple') K <- par1 > nx <- length(x) > nxmK <- nx - K > x <- ts(x, frequency = par1) > if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F) > if (par2 == 'Double') fit <- HoltWinters(x, gamma=F) > if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3) > fit Holt-Winters exponential smoothing with trend and additive seasonal component. Call: HoltWinters(x = x, seasonal = par3) Smoothing parameters: alpha: 0.7319836 beta : 0.01057445 gamma: 1 Coefficients: [,1] a 8.385949554 b 0.009352273 s1 0.059445946 s2 0.034752981 s3 -0.005579803 s4 -0.030397038 s5 -0.051446780 s6 -0.021295770 s7 -0.143680093 s8 -0.066990592 s9 0.010865109 s10 0.006800643 s11 -0.021920224 s12 0.024050446 > myresid <- x - fit$fitted[,'xhat'] > postscript(file="/var/www/html/rcomp/tmp/1iukj1264441736.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > op <- par(mfrow=c(2,1)) > plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing') > plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors') > par(op) > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/250ne1264441736.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > p <- predict(fit, par1, prediction.interval=TRUE) > np <- length(p[,1]) > plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing') > dev.off() null device 1 > postscript(file="/var/www/html/rcomp/tmp/3gu5v1264441736.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > op <- par(mfrow = c(2,2)) > acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF') > spectrum(myresid,main='Residals Periodogram') > cpgram(myresid,main='Residal Cumulative Periodogram') > qqnorm(myresid,main='Residual Normal QQ Plot') > qqline(myresid) > par(op) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'Value',header=TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,fit$alpha) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,fit$beta) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'gamma',header=TRUE) > a<-table.element(a,fit$gamma) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/45jao1264441736.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t',header=TRUE) > a<-table.element(a,'Observed',header=TRUE) > a<-table.element(a,'Fitted',header=TRUE) > a<-table.element(a,'Residuals',header=TRUE) > a<-table.row.end(a) > for (i in 1:nxmK) { + a<-table.row.start(a) + a<-table.element(a,i+K,header=TRUE) + a<-table.element(a,x[i+K]) + a<-table.element(a,fit$fitted[i,'xhat']) + a<-table.element(a,myresid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/59bu41264441736.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t',header=TRUE) > a<-table.element(a,'Forecast',header=TRUE) > a<-table.element(a,'95% Lower Bound',header=TRUE) > a<-table.element(a,'95% Upper Bound',header=TRUE) > a<-table.row.end(a) > for (i in 1:np) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,p[i,'fit']) + a<-table.element(a,p[i,'lwr']) + a<-table.element(a,p[i,'upr']) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/6iysl1264441736.tab") > > try(system("convert tmp/1iukj1264441736.ps tmp/1iukj1264441736.png",intern=TRUE)) character(0) > try(system("convert tmp/250ne1264441736.ps tmp/250ne1264441736.png",intern=TRUE)) character(0) > try(system("convert tmp/3gu5v1264441736.ps tmp/3gu5v1264441736.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.891 0.517 1.803