R version 2.10.1 (2009-12-14) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(0.30102999566398 + ,0.65321251377534 + ,0 + ,0.81954393554187 + ,1.6232492903979 + ,3 + ,1 + ,3 + ,0.25527250510331 + ,1.83884909073726 + ,3.40602894496362 + ,3.66304097489397 + ,2.79518458968242 + ,3 + ,5 + ,4 + ,-0.15490195998574 + ,1.43136376415899 + ,1.02325245963371 + ,2.25406445291434 + ,2.25527250510331 + ,4 + ,4 + ,4 + ,0.5910646070265 + ,1.27875360095283 + ,-1.69897000433602 + ,-0.52287874528034 + ,1.54406804435028 + ,1 + ,1 + ,1 + ,0 + ,1.48287358360875 + ,2.20411998265592 + ,2.22788670461367 + ,2.59328606702046 + ,4 + ,5 + ,4 + ,0.55630250076729 + ,1.44715803134222 + ,0.51851393987789 + ,1.40823996531185 + ,1.79934054945358 + ,1 + ,2 + ,1 + ,0.14612803567824 + ,1.69897000433602 + ,1.71733758272386 + ,2.64345267648619 + ,2.36172783601759 + ,1 + ,1 + ,1 + ,0.17609125905568 + ,0.84509804001426 + ,-0.36653154442041 + ,0.80617997398389 + ,2.04921802267018 + ,5 + ,4 + ,4 + ,-0.15490195998574 + ,1.47712125471966 + ,2.66745295288995 + ,2.62634036737504 + ,2.44870631990508 + ,5 + ,5 + ,5 + ,0.32221929473392 + ,0.54406804435028 + ,-1.09691001300806 + ,0.079181246047625 + ,1.6232492903979 + ,1 + ,1 + ,1 + ,0.61278385671974 + ,0.77815125038364 + ,-0.10237290870956 + ,0.54406804435028 + ,1.6232492903979 + ,2 + ,2 + ,2 + ,0.079181246047625 + ,1.01703333929878 + ,-0.69897000433602 + ,0.69897000433602 + ,2.07918124604762 + ,2 + ,2 + ,2 + ,-0.30102999566398 + ,1.30102999566398 + ,1.44185217577329 + ,2.06069784035361 + ,2.17026171539496 + ,5 + ,5 + ,5 + ,0.53147891704226 + ,0.5910646070265 + ,-0.92081875395238 + ,0 + ,1.20411998265592 + ,3 + ,1 + ,2 + ,0.17609125905568 + ,1.61278385671974 + ,1.92941892571429 + ,2.51188336097887 + ,2.49136169383427 + ,1 + ,3 + ,1 + ,0.53147891704226 + ,0.95424250943932 + ,-1 + ,0.60205999132796 + ,1.44715803134222 + ,5 + ,1 + ,3 + ,-0.096910013008056 + ,0.88081359228079 + ,0.01703333929878 + ,0.74036268949424 + ,1.83250891270624 + ,5 + ,3 + ,4 + ,-0.096910013008056 + ,1.66275783168157 + ,2.71683772329952 + ,2.81624129999178 + ,2.52633927738984 + ,5 + ,5 + ,5 + ,0.30102999566398 + ,1.38021124171161 + ,-2 + ,-0.60205999132796 + ,1.69897000433602 + ,1 + ,1 + ,1 + ,0.27875360095283 + ,2 + ,1.79239168949825 + ,3.12057393120585 + ,2.42651126136458 + ,1 + ,1 + ,1 + ,0.11394335230684 + ,0.50514997831991 + ,-1.69897000433602 + ,-0.39794000867204 + ,1.27875360095283 + ,4 + ,1 + ,3 + ,0.7481880270062 + ,0.69897000433602 + ,0.23044892137827 + ,0.79934054945358 + ,1.07918124604762 + ,2 + ,1 + ,1 + ,0.49136169383427 + ,0.81291335664286 + ,0.54406804435028 + ,1.03342375548695 + ,2.07918124604762 + ,2 + ,1 + ,1 + ,0.25527250510331 + ,1.07918124604762 + ,-0.31875876262441 + ,1.19033169817029 + ,2.14612803567824 + ,2 + ,2 + ,2 + ,-0.045757490560675 + ,1.30535136944662 + ,1 + ,2.06069784035361 + ,2.23044892137827 + ,4 + ,4 + ,4 + ,0.25527250510331 + ,1.11394335230684 + ,0.20951501454263 + ,1.05690485133647 + ,1.23044892137827 + ,2 + ,1 + ,2 + ,0.27875360095283 + ,1.43136376415899 + ,2.28330122870355 + ,2.25527250510331 + ,2.06069784035361 + ,4 + ,4 + ,4 + ,-0.045757490560675 + ,1.25527250510331 + ,0.39794000867204 + ,1.08278537031645 + ,1.49136169383427 + ,5 + ,5 + ,5 + ,0.41497334797082 + ,0.67209785793572 + ,-0.55284196865778 + ,0.27875360095283 + ,1.32221929473392 + ,3 + ,1 + ,3 + ,0.38021124171161 + ,0.99122607569249 + ,0.62736585659273 + ,1.70243053644553 + ,1.7160033436348 + ,1 + ,1 + ,1 + ,0.079181246047625 + ,1.46239799789896 + ,0.83250891270624 + ,2.25285303097989 + ,2.2148438480477 + ,2 + ,3 + ,2 + ,-0.045757490560675 + ,0.84509804001426 + ,-0.1249387366083 + ,1.0899051114394 + ,2.35218251811136 + ,2 + ,2 + ,2 + ,-0.30102999566398 + ,0.77815125038364 + ,0.55630250076729 + ,1.32221929473392 + ,2.35218251811136 + ,3 + ,2 + ,3 + ,-0.22184874961636 + ,1.30102999566398 + ,1.74429298312268 + ,2.24303804868629 + ,2.17897694729317 + ,5 + ,5 + ,5 + ,0.36172783601759 + ,0.65321251377534 + ,-0.045757490560675 + ,0.41497334797082 + ,1.77815125038364 + ,2 + ,1 + ,2 + ,-0.30102999566398 + ,0.8750612633917 + ,0.30102999566398 + ,1.0899051114394 + ,2.30102999566398 + ,3 + ,1 + ,3 + ,0.41497334797082 + ,0.36172783601759 + ,-1 + ,0.39794000867204 + ,1.66275783168157 + ,3 + ,2 + ,2 + ,-0.22184874961636 + ,1.38021124171161 + ,0.6222140229663 + ,1.76342799356294 + ,2.32221929473392 + ,4 + ,3 + ,4 + ,0.81954393554187 + ,0.47712125471966 + ,0.54406804435028 + ,0.5910646070265 + ,1.14612803567824 + ,2 + ,1 + ,1) + ,dim=c(8 + ,39) + ,dimnames=list(c('logPS' + ,'logL' + ,'logWb' + ,'logWbr' + ,'logtg' + ,'P' + ,'S' + ,'D') + ,1:39)) > y <- array(NA,dim=c(8,39),dimnames=list(c('logPS','logL','logWb','logWbr','logtg','P','S','D'),1:39)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from package:base : as.Date.numeric Warning messages: 1: package 'lmtest' was built under R version 2.8.1 and help may not work correctly 2: package 'zoo' was built under R version 2.8.1 and help may not work correctly > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x logPS logL logWb logWbr logtg P S D 1 0.30103000 0.6532125 0.00000000 0.81954394 1.623249 3 1 3 2 0.25527251 1.8388491 3.40602894 3.66304097 2.795185 3 5 4 3 -0.15490196 1.4313638 1.02325246 2.25406445 2.255273 4 4 4 4 0.59106461 1.2787536 -1.69897000 -0.52287875 1.544068 1 1 1 5 0.00000000 1.4828736 2.20411998 2.22788670 2.593286 4 5 4 6 0.55630250 1.4471580 0.51851394 1.40823997 1.799341 1 2 1 7 0.14612804 1.6989700 1.71733758 2.64345268 2.361728 1 1 1 8 0.17609126 0.8450980 -0.36653154 0.80617997 2.049218 5 4 4 9 -0.15490196 1.4771213 2.66745295 2.62634037 2.448706 5 5 5 10 0.32221929 0.5440680 -1.09691001 0.07918125 1.623249 1 1 1 11 0.61278386 0.7781513 -0.10237291 0.54406804 1.623249 2 2 2 12 0.07918125 1.0170333 -0.69897000 0.69897000 2.079181 2 2 2 13 -0.30103000 1.3010300 1.44185218 2.06069784 2.170262 5 5 5 14 0.53147892 0.5910646 -0.92081875 0.00000000 1.204120 3 1 2 15 0.17609126 1.6127839 1.92941893 2.51188336 2.491362 1 3 1 16 0.53147892 0.9542425 -1.00000000 0.60205999 1.447158 5 1 3 17 -0.09691001 0.8808136 0.01703334 0.74036269 1.832509 5 3 4 18 -0.09691001 1.6627578 2.71683772 2.81624130 2.526339 5 5 5 19 0.30103000 1.3802112 -2.00000000 -0.60205999 1.698970 1 1 1 20 0.27875360 2.0000000 1.79239169 3.12057393 2.426511 1 1 1 21 0.11394335 0.5051500 -1.69897000 -0.39794001 1.278754 4 1 3 22 0.74818803 0.6989700 0.23044892 0.79934055 1.079181 2 1 1 23 0.49136169 0.8129134 0.54406804 1.03342376 2.079181 2 1 1 24 0.25527251 1.0791812 -0.31875876 1.19033170 2.146128 2 2 2 25 -0.04575749 1.3053514 1.00000000 2.06069784 2.230449 4 4 4 26 0.25527251 1.1139434 0.20951501 1.05690485 1.230449 2 1 2 27 0.27875360 1.4313638 2.28330123 2.25527251 2.060698 4 4 4 28 -0.04575749 1.2552725 0.39794001 1.08278537 1.491362 5 5 5 29 0.41497335 0.6720979 -0.55284197 0.27875360 1.322219 3 1 3 30 0.38021124 0.9912261 0.62736586 1.70243054 1.716003 1 1 1 31 0.07918125 1.4623980 0.83250891 2.25285303 2.214844 2 3 2 32 -0.04575749 0.8450980 -0.12493874 1.08990511 2.352183 2 2 2 33 -0.30103000 0.7781513 0.55630250 1.32221929 2.352183 3 2 3 34 -0.22184875 1.3010300 1.74429298 2.24303805 2.178977 5 5 5 35 0.36172784 0.6532125 -0.04575749 0.41497335 1.778151 2 1 2 36 -0.30103000 0.8750613 0.30103000 1.08990511 2.301030 3 1 3 37 0.41497335 0.3617278 -1.00000000 0.39794001 1.662758 3 2 2 38 -0.22184875 1.3802112 0.62221402 1.76342799 2.322219 4 3 4 39 0.81954394 0.4771213 0.54406804 0.59106461 1.146128 2 1 1 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) logL logWb logWbr logtg P 1.27731 0.06911 0.14055 -0.11512 -0.39749 0.09398 S D 0.05249 -0.26414 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.22987 -0.10757 -0.02791 0.09472 0.41710 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.27731 0.18596 6.869 1.07e-07 *** logL 0.06911 0.11643 0.594 0.557105 logWb 0.14055 0.07146 1.967 0.058213 . logWbr -0.11512 0.10471 -1.099 0.280033 logtg -0.39749 0.10275 -3.869 0.000525 *** P 0.09398 0.06289 1.494 0.145224 S 0.05249 0.03991 1.315 0.198047 D -0.26414 0.07418 -3.561 0.001217 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.1641 on 31 degrees of freedom Multiple R-squared: 0.7575, Adjusted R-squared: 0.7028 F-statistic: 13.83 on 7 and 31 DF, p-value: 5.648e-08 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.9352297 0.12954056 0.06477028 [2,] 0.8785266 0.24294689 0.12147344 [3,] 0.9322829 0.13543422 0.06771711 [4,] 0.8783762 0.24324765 0.12162383 [5,] 0.8548455 0.29030907 0.14515453 [6,] 0.9167322 0.16653564 0.08326782 [7,] 0.9220652 0.15586962 0.07793481 [8,] 0.8722234 0.25555316 0.12777658 [9,] 0.8224597 0.35508064 0.17754032 [10,] 0.7545507 0.49089868 0.24544934 [11,] 0.7201405 0.55971898 0.27985949 [12,] 0.6247025 0.75059501 0.37529750 [13,] 0.5183762 0.96324750 0.48162375 [14,] 0.5139578 0.97208432 0.48604216 [15,] 0.4229254 0.84585070 0.57707465 [16,] 0.5095360 0.98092791 0.49046395 [17,] 0.7009698 0.59806036 0.29903018 [18,] 0.9788886 0.04222275 0.02111137 > postscript(file="/var/www/rcomp/tmp/1028n1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/2028n1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/3sbqp1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/4sbqp1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/5sbqp1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 39 Frequency = 1 1 2 3 4 5 6 0.17614950 0.41710055 -0.04831766 0.13539826 0.01590667 0.04862855 7 8 9 10 11 12 -0.12920348 0.17595705 -0.04515328 -0.06650807 0.23928925 -0.02790999 13 14 15 16 17 18 -0.18265350 0.01522659 -0.19169416 0.24336107 -0.19464688 0.04578926 19 20 21 22 23 24 -0.06688229 0.05274877 -0.13298742 -0.06513145 0.05052716 0.17362644 25 26 27 28 29 30 0.04067505 -0.22986560 0.13103756 -0.15993528 0.18457466 -0.05801879 31 32 33 34 35 36 -0.09361320 -0.06812481 -0.21761074 -0.12152391 0.08811199 -0.18301553 37 38 39 0.10132312 -0.03274569 -0.01988977 > postscript(file="/var/www/rcomp/tmp/6l2ps1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 39 Frequency = 1 lag(myerror, k = 1) myerror 0 0.17614950 NA 1 0.41710055 0.17614950 2 -0.04831766 0.41710055 3 0.13539826 -0.04831766 4 0.01590667 0.13539826 5 0.04862855 0.01590667 6 -0.12920348 0.04862855 7 0.17595705 -0.12920348 8 -0.04515328 0.17595705 9 -0.06650807 -0.04515328 10 0.23928925 -0.06650807 11 -0.02790999 0.23928925 12 -0.18265350 -0.02790999 13 0.01522659 -0.18265350 14 -0.19169416 0.01522659 15 0.24336107 -0.19169416 16 -0.19464688 0.24336107 17 0.04578926 -0.19464688 18 -0.06688229 0.04578926 19 0.05274877 -0.06688229 20 -0.13298742 0.05274877 21 -0.06513145 -0.13298742 22 0.05052716 -0.06513145 23 0.17362644 0.05052716 24 0.04067505 0.17362644 25 -0.22986560 0.04067505 26 0.13103756 -0.22986560 27 -0.15993528 0.13103756 28 0.18457466 -0.15993528 29 -0.05801879 0.18457466 30 -0.09361320 -0.05801879 31 -0.06812481 -0.09361320 32 -0.21761074 -0.06812481 33 -0.12152391 -0.21761074 34 0.08811199 -0.12152391 35 -0.18301553 0.08811199 36 0.10132312 -0.18301553 37 -0.03274569 0.10132312 38 -0.01988977 -0.03274569 39 NA -0.01988977 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 0.41710055 0.17614950 [2,] -0.04831766 0.41710055 [3,] 0.13539826 -0.04831766 [4,] 0.01590667 0.13539826 [5,] 0.04862855 0.01590667 [6,] -0.12920348 0.04862855 [7,] 0.17595705 -0.12920348 [8,] -0.04515328 0.17595705 [9,] -0.06650807 -0.04515328 [10,] 0.23928925 -0.06650807 [11,] -0.02790999 0.23928925 [12,] -0.18265350 -0.02790999 [13,] 0.01522659 -0.18265350 [14,] -0.19169416 0.01522659 [15,] 0.24336107 -0.19169416 [16,] -0.19464688 0.24336107 [17,] 0.04578926 -0.19464688 [18,] -0.06688229 0.04578926 [19,] 0.05274877 -0.06688229 [20,] -0.13298742 0.05274877 [21,] -0.06513145 -0.13298742 [22,] 0.05052716 -0.06513145 [23,] 0.17362644 0.05052716 [24,] 0.04067505 0.17362644 [25,] -0.22986560 0.04067505 [26,] 0.13103756 -0.22986560 [27,] -0.15993528 0.13103756 [28,] 0.18457466 -0.15993528 [29,] -0.05801879 0.18457466 [30,] -0.09361320 -0.05801879 [31,] -0.06812481 -0.09361320 [32,] -0.21761074 -0.06812481 [33,] -0.12152391 -0.21761074 [34,] 0.08811199 -0.12152391 [35,] -0.18301553 0.08811199 [36,] 0.10132312 -0.18301553 [37,] -0.03274569 0.10132312 [38,] -0.01988977 -0.03274569 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 0.41710055 0.17614950 2 -0.04831766 0.41710055 3 0.13539826 -0.04831766 4 0.01590667 0.13539826 5 0.04862855 0.01590667 6 -0.12920348 0.04862855 7 0.17595705 -0.12920348 8 -0.04515328 0.17595705 9 -0.06650807 -0.04515328 10 0.23928925 -0.06650807 11 -0.02790999 0.23928925 12 -0.18265350 -0.02790999 13 0.01522659 -0.18265350 14 -0.19169416 0.01522659 15 0.24336107 -0.19169416 16 -0.19464688 0.24336107 17 0.04578926 -0.19464688 18 -0.06688229 0.04578926 19 0.05274877 -0.06688229 20 -0.13298742 0.05274877 21 -0.06513145 -0.13298742 22 0.05052716 -0.06513145 23 0.17362644 0.05052716 24 0.04067505 0.17362644 25 -0.22986560 0.04067505 26 0.13103756 -0.22986560 27 -0.15993528 0.13103756 28 0.18457466 -0.15993528 29 -0.05801879 0.18457466 30 -0.09361320 -0.05801879 31 -0.06812481 -0.09361320 32 -0.21761074 -0.06812481 33 -0.12152391 -0.21761074 34 0.08811199 -0.12152391 35 -0.18301553 0.08811199 36 0.10132312 -0.18301553 37 -0.03274569 0.10132312 38 -0.01988977 -0.03274569 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/7ecov1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/8ecov1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/9ecov1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/rcomp/tmp/10635g1272718491.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/11a3441272718491.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/12vm2a1272718491.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/13rwij1272718491.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/14561k1272718492.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/15gxi41272718492.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/16u7yd1272718492.tab") + } > try(system("convert tmp/1028n1272718491.ps tmp/1028n1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/2028n1272718491.ps tmp/2028n1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/3sbqp1272718491.ps tmp/3sbqp1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/4sbqp1272718491.ps tmp/4sbqp1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/5sbqp1272718491.ps tmp/5sbqp1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/6l2ps1272718491.ps tmp/6l2ps1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/7ecov1272718491.ps tmp/7ecov1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/8ecov1272718491.ps tmp/8ecov1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/9ecov1272718491.ps tmp/9ecov1272718491.png",intern=TRUE)) character(0) > try(system("convert tmp/10635g1272718491.ps tmp/10635g1272718491.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.93 2.32 4.59