Home » date » 2010 » May » 13 »

B611,steven,coomans,thesis,ETS,per2maand

*Unverified author*
R Software Module: Patrick.Wessa/rwasp_demand_forecasting_croston.wasp (opens new window with default values)
Title produced by software: Croston Forecasting
Date of computation: Thu, 13 May 2010 13:22:33 +0000
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2010/May/13/t1273756979jheviml8ejowe31.htm/, Retrieved Thu, 13 May 2010 15:23:01 +0200
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2010/May/13/t1273756979jheviml8ejowe31.htm/},
    year = {2010},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2010},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
B611,steven,coomans,thesis,ETS,per2maand
 
Dataseries X:
» Textbox « » Textfile « » CSV «
22.325 94.125 12.275 7.125 18.925 38.025 28.138 2.386 13.225 26.25 31.975 31.275 34.4875 52.1375 15.675 48.9 16.5 37 54.125 34.4875 44.4875 40.2 52.13 49.575 44.3625
 
Output produced by software:


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time11 seconds
R Serverwessa.org @ wessa.org


Demand Forecast
PointForecast95% LB80% LB80% UB95% UB
26102.01124841284129.517181560318654.6099259393838149.412570886298174.505315265363
2719.42308595098925.1314685801110110.07829963844328.767872263535333.7147033218673
2859.830659723683114.339505950546730.08559308151589.5757263658511105.321813496819
2925.38873487860015.476680037561212.368942037492538.408527719707745.300789719639
3046.84307584452119.0068143693811122.103274240871071.582877448171284.679337319661
3156.54967664736849.5745797599948325.834311756747687.2650415379892103.524773534742
3232.78130659688314.811721030247914.492977600385451.069635593380760.7508921635182
3334.41519673902464.2898743544396114.71730720175354.113086276296364.5405191236097
3444.63354534522734.592171791081718.451898452917970.815192237536784.6749188993728
3550.34805774977584.1014265194385220.109010949989480.587104549562396.5946889801132
3645.43262924261662.7419485432833617.518693519336473.346564965896788.1233099419498
3743.98805090639751.7390859447903816.362937579688871.613164233106286.2370158680045
38102.0115875819071.9357464849427536.5755123057051167.447662858108202.087428678870
3919.4231505292589-0.02550245447296726.7063598761468132.139941182370938.8718035129907
4059.8308586498727-1.2782014283989719.873791974157199.7879253255883120.939918728144
4125.3888192915802-1.045794111320088.104154645559642.673483937600951.8234326944805
4246.8432315893287-2.8485125230975714.351546556215279.334916622442296.534975701755
4356.5498646648791-4.5370725203613116.607263371396296.492465958362117.636801850119
4432.7814155888354-3.260718076402659.21473110453256.348100073138868.8235492540735
4534.4153111633680-4.079306069450039.2450338680252159.585588458710972.9099283961861
4644.6336937437432-6.1340564695326211.438446138074177.828941349412295.401443957019
4750.3482251480183-7.8631779393061312.285834539032288.4106157570045108.559628235343
4845.4327802979428-7.9405043552384510.533865294872680.33169530101398.806064951124
4943.9881971587604-8.50009867537179.6679452410775178.308449076443296.4764929928924


Actuals and Interpolation
TimeActualForecast
122.32522.6302772146684
294.12593.756538256208
312.27512.4174361918487
47.1257.957394580737
518.92518.5967972646909
638.02537.6891879612587
728.13828.3831854617570
82.3863.268311761931
913.22513.4256098558079
1026.2525.9613378599121
1131.97531.677913672259
1231.27530.9670977340054
1334.487534.1052947012212
1452.137552.3157623512095
1515.67515.3162678731622
1648.948.638206172574
1716.516.5588725982834
183736.8388933781173
1954.12553.7729755226329
2034.487534.1226326563131
2144.487543.9518330273531
2240.240.2574947399717
2352.1352.0305427112002
2449.57549.4446735915632
2544.362544.3510798393309


What is next?
Simulate Time Series
Generate Forecasts
Forecast Analysis
 
Charts produced by software:
http://www.freestatistics.org/blog/date/2010/May/13/t1273756979jheviml8ejowe31/1vw7t1273756940.png (open in new window)
http://www.freestatistics.org/blog/date/2010/May/13/t1273756979jheviml8ejowe31/1vw7t1273756940.ps (open in new window)


http://www.freestatistics.org/blog/date/2010/May/13/t1273756979jheviml8ejowe31/25n6e1273756940.png (open in new window)
http://www.freestatistics.org/blog/date/2010/May/13/t1273756979jheviml8ejowe31/25n6e1273756940.ps (open in new window)


 
Parameters (Session):
par1 = Input box ; par2 = ARIMA ; par3 = NA ; par4 = NA ; par5 = ZZZ ; par6 = 12 ; par7 = dum ; par8 = dumresult ; par9 = 3 ; par10 = 0.1 ;
 
Parameters (R input):
par1 = Input box ; par2 = ETS ; par3 = NA ; par4 = NA ; par5 = ZZZ ; par6 = 12 ; par7 = dum ; par8 = dumresult ; par9 = 3 ; par10 = 0.1 ;
 
R code (references can be found in the software module):
par10 <- '0.1'
par9 <- '3'
par8 <- 'dumresult'
par7 <- 'dum'
par6 <- '12'
par5 <- 'ZZZ'
par4 <- 'NA'
par3 <- 'NA'
par2 <- 'Croston'
par1 <- 'Input box'
if(par3!='NA') par3 <- as.numeric(par3) else par3 <- NA
if(par4!='NA') par4 <- as.numeric(par4) else par4 <- NA
par6 <- as.numeric(par6) #Seasonal Period
par9 <- as.numeric(par9) #Forecast Horizon
par10 <- as.numeric(par10) #Alpha
library(forecast)
if (par1 == 'CSV') {
xarr <- read.csv(file=paste('tmp/',par7,'.csv',sep=''),header=T)
numseries <- length(xarr[1,])-1
n <- length(xarr[,1])
nmh <- n - par9
nmhp1 <- nmh + 1
rarr <- array(NA,dim=c(n,numseries))
farr <- array(NA,dim=c(n,numseries))
parr <- array(NA,dim=c(numseries,8))
colnames(parr) = list('ME','RMSE','MAE','MPE','MAPE','MASE','ACF1','TheilU')
for(i in 1:numseries) {
sindex <- i+1
x <- xarr[,sindex]
if(par2=='Croston') {
if (i==1) m <- croston(x,alpha=par10)
if (i==1) mydemand <- m$model$demand[]
fit <- croston(x[1:nmh],h=par9,alpha=par10)
}
if(par2=='ARIMA') {
m <- auto.arima(ts(x,freq=par6),d=par3,D=par4)
mydemand <- forecast(m)
fit <- auto.arima(ts(x[1:nmh],freq=par6),d=par3,D=par4)
}
if(par2=='ETS') {
m <- ets(ts(x,freq=par6),model=par5)
mydemand <- forecast(m)
fit <- ets(ts(x[1:nmh],freq=par6),model=par5)
}
try(rarr[,i] <- mydemand$resid,silent=T)
try(farr[,i] <- mydemand$mean,silent=T)
if (par2!='Croston') parr[i,] <- accuracy(forecast(fit,par9),x[nmhp1:n])
if (par2=='Croston') parr[i,] <- accuracy(fit,x[nmhp1:n])
}
write.csv(farr,file=paste('tmp/',par8,'_f.csv',sep=''))
write.csv(rarr,file=paste('tmp/',par8,'_r.csv',sep=''))
write.csv(parr,file=paste('tmp/',par8,'_p.csv',sep=''))
}
if (par1 == 'Input box') {
numseries <- 1
n <- length(x)
if(par2=='Croston') {
m <- croston(x)
mydemand <- m$model$demand[]
}
if(par2=='ARIMA') {
m <- auto.arima(ts(x,freq=par6),d=par3,D=par4)
mydemand <- forecast(m)
}
if(par2=='ETS') {
m <- ets(ts(x,freq=par6),model=par5)
mydemand <- forecast(m)
}
summary(m)
}
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
if (par2=='Croston') plot(m)
if ((par2=='ARIMA') | par2=='ETS') plot(forecast(m))
plot(mydemand$resid,type='l',main='Residuals', ylab='residual value', xlab='time')
par(op)
dev.off()
bitmap(file='pic2.png')
op <- par(mfrow=c(2,2))
acf(mydemand$resid, lag.max=n/3, main='Residual ACF', ylab='autocorrelation', xlab='time lag')
pacf(mydemand$resid,lag.max=n/3, main='Residual PACF', ylab='partial autocorrelation', xlab='time lag')
cpgram(mydemand$resid, main='Cumulative Periodogram of Residuals')
qqnorm(mydemand$resid); qqline(mydemand$resid, col=2)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Demand Forecast',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Point',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% LB',header=TRUE)
a<-table.element(a,'80% LB',header=TRUE)
a<-table.element(a,'80% UB',header=TRUE)
a<-table.element(a,'95% UB',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(mydemand$mean)) {
a<-table.row.start(a)
a<-table.element(a,i+n,header=TRUE)
a<-table.element(a,as.numeric(mydemand$mean[i]))
a<-table.element(a,as.numeric(mydemand$lower[i,2]))
a<-table.element(a,as.numeric(mydemand$lower[i,1]))
a<-table.element(a,as.numeric(mydemand$upper[i,1]))
a<-table.element(a,as.numeric(mydemand$upper[i,2]))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Actuals and Interpolation',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time',header=TRUE)
a<-table.element(a,'Actual',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i] - as.numeric(m$resid[i]))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'What is next?',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink(paste('http://www.wessa.net/Patrick.Wessa/rwasp_demand_forecasting_simulate.wasp',sep=''),'Simulate Time Series','',target=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink(paste('http://www.wessa.net/Patrick.Wessa/rwasp_demand_forecasting_croston.wasp',sep=''),'Generate Forecasts','',target=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink(paste('http://www.wessa.net/Patrick.Wessa/rwasp_demand_forecasting_analysis.wasp',sep=''),'Forecast Analysis','',target=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable0.tab')
-SERVER-wessa.org
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by