R version 2.8.0 (2008-10-20) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > par5 = '0.95' > par4 = '13' > par3 = '0.95' > par2 = '1' > par1 = '105' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) > par2 <- as.numeric(par2) > par3 <- as.numeric(par3) > par4 <- as.numeric(par4) > par5 <- as.numeric(par5) > (z <- abs(qnorm((1-par3)/2)) + abs(qnorm(1-par5))) [1] 3.604818 > (z1 <- abs(qnorm(1-par3)) + abs(qnorm(1-par5))) [1] 3.289707 > z2 <- z*z > z2one <- z1*z1 > z24 <- z2 * par4 > z24one <- z2one * par4 > npop <- array(NA, 200) > ppop <- array(NA, 200) > for (i in 1:200) + { + ppop[i] <- i * 100 + npop[i] <- ppop[i] * z24 / (z24 + (ppop[i] - 1) * par2*par2) + } > postscript(file="/var/www/html/freestat/rcomp/tmp/1m05m1289484196.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(ppop,npop, xlab='population size', ylab='sample size (2 sided test)', main = paste('Confidence',par3)) > dumtext <- paste('Margin of error = ',par2) > dumtext <- paste(dumtext,' Population Var. = ') > dumtext <- paste(dumtext, par4) > mtext(dumtext) > grid() > dev.off() null device 1 > par2sq <- par2 * par2 > num <- par1 * z24 > denom <- z24 + (par1 - 1) * par2sq > (n <- num/denom) [1] 64.98992 > num1 <- par1 * z24one > denom1 <- z24one + (par1 - 1) * par2sq > (n1 <- num1/denom1) [1] 60.37179 > > #Note: the /var/www/html/freestat/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/freestat/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,par1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,par4) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha) + z(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,n) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,n1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/2lsji1289484196.tab") > (ni <- z24 / (par2sq)) [1] 168.9312 > (ni1 <- z24one / (par2sq)) [1] 140.6883 > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (for Infinite Populations)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,'infinite') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,par4) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha) + z(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,ni) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,ni1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/3h2z91289484196.tab") > (z <- abs(qt((1-par3)/2,n-1)) + abs(qt(1-par5,n-1))) [1] 3.666753 > (z1 <- abs(qt(1-par3,n1-1)) + abs(qt(1-par5,n1-1))) [1] 3.341852 > z2 <- z*z > z2one <- z1*z1 > z24 <- z2 * par4 > z24one <- z2one * par4 > par2sq <- par2 * par2 > num <- par1 * z24 > denom <- z24 + (par1 - 1) * par2sq > (n <- num/denom) [1] 65.83017 > num1 <- par1 * z24one > denom1 <- z24one + (par1 - 1) * par2sq > (n1 <- num1/denom1) [1] 61.17691 > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (Unknown Population Variance)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,par1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,'unknown') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha) + t(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,n) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,n1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/4zuvo1289484196.tab") > (z <- abs(qt((1-par3)/2,ni-1)) + abs(qt(1-par5,ni-1))) [1] 3.628169 > (z1 <- abs(qt(1-par3,ni1-1)) + abs(qt(1-par5,ni1-1))) [1] 3.31167 > z2 <- z*z > z2one <- z1*z1 > z24 <- z2 * par4 > z24one <- z2one * par4 > (ni <- z24 / (par2sq)) [1] 171.1269 > (ni1 <- z24one / (par2sq)) [1] 142.5731 > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size
(Infinite Population, Unknown Population Variance)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,'infinite') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,'unknown') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha) + t(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,ni) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,ni1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/html/freestat/rcomp/tmp/5d4bw1289484196.tab") > > try(system("convert tmp/1m05m1289484196.ps tmp/1m05m1289484196.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.708 0.289 0.782