R version 2.11.1 (2010-05-31)
Copyright (C) 2010 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,5
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,5
+ ,3
+ ,5
+ ,1
+ ,5
+ ,5
+ ,2
+ ,1
+ ,3
+ ,5
+ ,3
+ ,2
+ ,5
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,5
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,4
+ ,5
+ ,1
+ ,5
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,5
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,1
+ ,5
+ ,5
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,3
+ ,2
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,2
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,5
+ ,5
+ ,1
+ ,4
+ ,4
+ ,5
+ ,5
+ ,5
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,1
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,2
+ ,5
+ ,5
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,1
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,5
+ ,2
+ ,4
+ ,1
+ ,5
+ ,3
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,1
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,3
+ ,5
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,5
+ ,4
+ ,5
+ ,4
+ ,3
+ ,4
+ ,2
+ ,3
+ ,3
+ ,5
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,3
+ ,5
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,3
+ ,2
+ ,2
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,1
+ ,4
+ ,4
+ ,1
+ ,3
+ ,2
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,4
+ ,5
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,3
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,3
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,3
+ ,3
+ ,1
+ ,4
+ ,3
+ ,5
+ ,5
+ ,4
+ ,1
+ ,5
+ ,5
+ ,4
+ ,4
+ ,5
+ ,2
+ ,5
+ ,5
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,4
+ ,4
+ ,1
+ ,5
+ ,4
+ ,5
+ ,4
+ ,4
+ ,2
+ ,4
+ ,3
+ ,4
+ ,4
+ ,3
+ ,1
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,1
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,2
+ ,5
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,5
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,5
+ ,5
+ ,4
+ ,1
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,3
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,1
+ ,4
+ ,4
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,1
+ ,5
+ ,4
+ ,3
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,2
+ ,4
+ ,4
+ ,4
+ ,2
+ ,3
+ ,5
+ ,5
+ ,1
+ ,5
+ ,5
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,5
+ ,5
+ ,5
+ ,2
+ ,5
+ ,5
+ ,1
+ ,1
+ ,1
+ ,1
+ ,1
+ ,1
+ ,5
+ ,5
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,5
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,4
+ ,3
+ ,4
+ ,3
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,5
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,1
+ ,4
+ ,3
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,4
+ ,4
+ ,3
+ ,4
+ ,1
+ ,5
+ ,4
+ ,4
+ ,5
+ ,4
+ ,3
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,5
+ ,4
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,5
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,3
+ ,2
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,5
+ ,5
+ ,5
+ ,5
+ ,1
+ ,4
+ ,5
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,4
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,3
+ ,4
+ ,3
+ ,3
+ ,4
+ ,2
+ ,4
+ ,2
+ ,5
+ ,3
+ ,3
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,5
+ ,5
+ ,4
+ ,5
+ ,1
+ ,5
+ ,5
+ ,5
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,1
+ ,5
+ ,5
+ ,5
+ ,4
+ ,4
+ ,3
+ ,5
+ ,3
+ ,4
+ ,3
+ ,3
+ ,2
+ ,3
+ ,3
+ ,4
+ ,5
+ ,5
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,5
+ ,5
+ ,4
+ ,5
+ ,1
+ ,5
+ ,5
+ ,5
+ ,5
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,4
+ ,4
+ ,4
+ ,2
+ ,4
+ ,4
+ ,4
+ ,5
+ ,4
+ ,2
+ ,4
+ ,4
+ ,5
+ ,5
+ ,5
+ ,2
+ ,5
+ ,4
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,3
+ ,4
+ ,4
+ ,4
+ ,1
+ ,4
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,5
+ ,4
+ ,4
+ ,1
+ ,5
+ ,5
+ ,5
+ ,5
+ ,5
+ ,1
+ ,5
+ ,5
+ ,5
+ ,5
+ ,4
+ ,3
+ ,4
+ ,5)
+ ,dim=c(6
+ ,161)
+ ,dimnames=list(c('Part_of_team'
+ ,'Respect_of_coach'
+ ,'Respect_of_team'
+ ,'Be_on_different_team'
+ ,'Be_liked'
+ ,'Proudness')
+ ,1:161))
>  y <- array(NA,dim=c(6,161),dimnames=list(c('Part_of_team','Respect_of_coach','Respect_of_team','Be_on_different_team','Be_liked','Proudness'),1:161))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
    Part_of_team Respect_of_coach Respect_of_team Be_on_different_team Be_liked
1              3                3               3                    3        3
2              5                5               5                    1        5
3              4                4               4                    3        3
4              4                4               4                    3        4
5              5                4               4                    1        4
6              5                3               5                    1        5
7              2                1               3                    5        3
8              5                4               4                    2        4
9              4                4               4                    2        4
10             4                4               4                    2        5
11             5                4               5                    4        5
12             3                3               3                    3        3
13             5                4               4                    2        4
14             3                3               3                    3        3
15             5                4               5                    1        5
16             3                3               3                    3        3
17             4                5               4                    2        4
18             5                4               5                    1        5
19             4                3               3                    3        4
20             3                3               3                    3        3
21             4                4               3                    2        4
22             4                3               4                    2        4
23             3                3               3                    3        3
24             3                3               3                    3        4
25             4                5               5                    1        4
26             5                5               5                    1        4
27             4                4               4                    1        4
28             4                4               4                    1        4
29             4                5               4                    1        4
30             4                4               4                    3        4
31             4                4               5                    1        4
32             3                3               3                    3        3
33             4                4               4                    1        4
34             5                4               5                    2        5
35             4                4               4                    1        4
36             4                4               4                    2        4
37             3                4               4                    2        4
38             4                4               4                    2        3
39             4                3               4                    1        5
40             4                4               4                    3        4
41             5                2               4                    1        5
42             4                4               4                    1        4
43             3                3               3                    3        3
44             3                3               3                    3        3
45             4                4               4                    1        3
46             4                3               4                    2        4
47             4                4               4                    4        4
48             5                4               4                    2        4
49             4                4               4                    1        4
50             5                4               4                    1        4
51             4                4               4                    2        4
52             4                4               4                    2        4
53             4                3               3                    3        4
54             4                4               5                    5        4
55             4                3               4                    2        3
56             5                4               4                    1        4
57             4                4               4                    1        4
58             4                3               5                    1        4
59             4                4               4                    1        4
60             4                4               4                    2        4
61             3                3               2                    2        3
62             4                4               4                    2        4
63             5                4               1                    4        4
64             3                2               3                    3        3
65             3                3               3                    3        3
66             4                5               1                    4        4
67             4                3               2                    4        4
68             4                4               1                    4        4
69             4                3               3                    3        4
70             3                4               2                    4        4
71             4                4               2                    4        4
72             3                3               3                    3        3
73             3                4               1                    4        4
74             3                3               1                    4        3
75             5                4               1                    5        5
76             4                5               2                    5        5
77             4                4               2                    4        4
78             2                4               1                    4        4
79             4                4               1                    4        4
80             3                3               3                    3        3
81             4                4               1                    5        4
82             4                4               2                    4        3
83             4                3               1                    4        5
84             4                4               2                    4        4
85             4                5               1                    5        4
86             4                4               1                    4        4
87             4                4               2                    4        4
88             3                3               3                    3        3
89             4                4               2                    4        4
90             3                4               2                    5        4
91             3                3               3                    3        3
92             5                4               2                    4        4
93             4                4               1                    4        4
94             5                4               1                    4        5
95             4                4               1                    4        4
96             3                4               2                    4        4
97             3                4               1                    4        4
98             4                4               1                    4        5
99             4                4               1                    4        5
100            4                4               2                    4        4
101            5                4               1                    4        4
102            5                5               1                    5        4
103            3                4               3                    4        4
104            5                4               1                    5        4
105            4                4               2                    4        4
106            4                4               3                    4        4
107            4                4               2                    4        3
108            3                3               3                    3        3
109            4                4               4                    2        3
110            5                1               5                    5        4
111            4                1               4                    4        5
112            5                2               5                    5        1
113            1                1               1                    1        5
114            4                2               4                    4        5
115            5                1               5                    5        3
116            3                3               3                    3        4
117            4                4               4                    5        4
118            3                4               3                    5        5
119            1                5               5                    3        3
120            3                3               3                    4        3
121            1                4               3                    5        5
122            1                5               4                    4        3
123            1                5               4                    4        5
124            3                4               4                    4        4
125            2                5               4                    5        5
126            1                5               5                    4        4
127            2                4               4                    5        4
128            4                5               4                    4        4
129            2                4               4                    4        4
130            1                4               4                    4        4
131            2                4               4                    4        4
132            1                4               4                    3        2
133            2                4               4                    4        4
134            2                4               5                    5        5
135            1                4               5                    3        3
136            3                3               3                    4        3
137            3                3               4                    3        3
138            4                3               3                    4        2
139            2                5               3                    3        4
140            1                4               4                    3        3
141            3                3               3                    5        5
142            1                5               5                    5        4
143            1                5               5                    5        4
144            1                4               4                    5        4
145            1                5               5                    5        4
146            3                5               3                    4        3
147            2                3               3                    4        5
148            2                4               4                    4        4
149            1                4               5                    5        4
150            1                5               5                    5        5
151            2                4               4                    4        4
152            1                4               4                    4        4
153            2                4               4                    4        5
154            2                4               4                    5        5
155            2                5               4                    3        3
156            3                3               3                    4        4
157            1                4               4                    5        4
158            4                5               4                    5        4
159            1                5               5                    5        5
160            1                5               5                    5        5
161            3                4               5                    3        3
    Proudness
1           3
2           5
3           4
4           4
5           4
6           5
7           2
8           4
9           4
10          4
11          4
12          3
13          4
14          3
15          4
16          3
17          4
18          5
19          3
20          3
21          3
22          3
23          3
24          3
25          4
26          4
27          4
28          4
29          4
30          4
31          4
32          3
33          4
34          5
35          4
36          4
37          4
38          4
39          4
40          4
41          3
42          4
43          3
44          3
45          4
46          3
47          4
48          4
49          3
50          4
51          4
52          4
53          4
54          5
55          3
56          4
57          4
58          4
59          4
60          4
61          3
62          4
63          1
64          3
65          5
66          4
67          4
68          3
69          4
70          4
71          3
72          5
73          4
74          5
75          4
76          4
77          4
78          4
79          3
80          5
81          5
82          4
83          4
84          5
85          4
86          4
87          3
88          4
89          4
90          3
91          5
92          5
93          5
94          4
95          4
96          4
97          4
98          4
99          4
100         4
101         5
102         4
103         4
104         3
105         5
106         4
107         3
108         2
109         5
110         4
111         5
112         1
113         5
114         5
115         3
116         4
117         4
118         5
119         3
120         4
121         5
122         4
123         4
124         4
125         5
126         4
127         5
128         4
129         4
130         4
131         4
132         4
133         4
134         5
135         3
136         4
137         3
138         4
139         4
140         3
141         5
142         5
143         4
144         5
145         4
146         3
147         5
148         4
149         5
150         4
151         4
152         4
153         4
154         5
155         3
156         4
157         5
158         4
159         5
160         4
161         3
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
         (Intercept)      Respect_of_coach       Respect_of_team  
              5.8105               -0.1566               -0.2958  
Be_on_different_team              Be_liked             Proudness  
             -0.4237                0.2918               -0.1564  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
      Min        1Q    Median        3Q       Max 
-4.611657 -0.588529 -0.008263  0.716900  2.964783 
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)           5.81049    0.64826   8.963 9.52e-16 ***
Respect_of_coach     -0.15661    0.10182  -1.538   0.1261    
Respect_of_team      -0.29580    0.07044  -4.199 4.50e-05 ***
Be_on_different_team -0.42370    0.06709  -6.315 2.71e-09 ***
Be_liked              0.29184    0.13300   2.194   0.0297 *  
Proudness            -0.15638    0.12587  -1.242   0.2160    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 1.054 on 155 degrees of freedom
Multiple R-squared: 0.2687,	Adjusted R-squared: 0.2451 
F-statistic: 11.39 on 5 and 155 DF,  p-value: 2.269e-09 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
               [,1]         [,2]       [,3]
  [1,] 1.384579e-01 2.769158e-01 0.86154208
  [2,] 5.558553e-02 1.111711e-01 0.94441447
  [3,] 4.361000e-02 8.722000e-02 0.95639000
  [4,] 1.733123e-02 3.466245e-02 0.98266877
  [5,] 1.668793e-02 3.337586e-02 0.98331207
  [6,] 6.870776e-03 1.374155e-02 0.99312922
  [7,] 5.290472e-03 1.058094e-02 0.99470953
  [8,] 2.179515e-03 4.359030e-03 0.99782048
  [9,] 1.626525e-03 3.253050e-03 0.99837348
 [10,] 8.104270e-04 1.620854e-03 0.99918957
 [11,] 1.197331e-03 2.394663e-03 0.99880267
 [12,] 5.338068e-04 1.067614e-03 0.99946619
 [13,] 2.360068e-04 4.720137e-04 0.99976399
 [14,] 9.315530e-05 1.863106e-04 0.99990684
 [15,] 3.854790e-05 7.709581e-05 0.99996145
 [16,] 2.121135e-05 4.242271e-05 0.99997879
 [17,] 4.361794e-05 8.723587e-05 0.99995638
 [18,] 2.691093e-05 5.382185e-05 0.99997309
 [19,] 1.398156e-05 2.796312e-05 0.99998602
 [20,] 6.828068e-06 1.365614e-05 0.99999317
 [21,] 4.082286e-06 8.164571e-06 0.99999592
 [22,] 1.758587e-06 3.517175e-06 0.99999824
 [23,] 1.134350e-06 2.268700e-06 0.99999887
 [24,] 4.619126e-07 9.238252e-07 0.99999954
 [25,] 1.969252e-07 3.938505e-07 0.99999980
 [26,] 1.153853e-07 2.307705e-07 0.99999988
 [27,] 4.829540e-08 9.659080e-08 0.99999995
 [28,] 1.998992e-08 3.997985e-08 0.99999998
 [29,] 1.631121e-07 3.262243e-07 0.99999984
 [30,] 8.401771e-08 1.680354e-07 0.99999992
 [31,] 4.219974e-08 8.439948e-08 0.99999996
 [32,] 1.898218e-08 3.796436e-08 0.99999998
 [33,] 4.417878e-08 8.835756e-08 0.99999996
 [34,] 1.992719e-08 3.985438e-08 0.99999998
 [35,] 8.518950e-09 1.703790e-08 0.99999999
 [36,] 3.616554e-09 7.233108e-09 1.00000000
 [37,] 1.727594e-09 3.455188e-09 1.00000000
 [38,] 6.877044e-10 1.375409e-09 1.00000000
 [39,] 3.321879e-10 6.643757e-10 1.00000000
 [40,] 1.334158e-09 2.668317e-09 1.00000000
 [41,] 5.572798e-10 1.114560e-09 1.00000000
 [42,] 1.443333e-09 2.886667e-09 1.00000000
 [43,] 7.634914e-10 1.526983e-09 1.00000000
 [44,] 4.147000e-10 8.293999e-10 1.00000000
 [45,] 2.173676e-10 4.347351e-10 1.00000000
 [46,] 2.240049e-10 4.480099e-10 1.00000000
 [47,] 1.733903e-10 3.467806e-10 1.00000000
 [48,] 6.246428e-10 1.249286e-09 1.00000000
 [49,] 5.503238e-10 1.100648e-09 1.00000000
 [50,] 8.480595e-10 1.696119e-09 1.00000000
 [51,] 1.350891e-09 2.701782e-09 1.00000000
 [52,] 2.171017e-09 4.342034e-09 1.00000000
 [53,] 1.029303e-09 2.058605e-09 1.00000000
 [54,] 2.550615e-09 5.101231e-09 1.00000000
 [55,] 6.528195e-08 1.305639e-07 0.99999993
 [56,] 3.880243e-08 7.760485e-08 0.99999996
 [57,] 1.902451e-08 3.804902e-08 0.99999998
 [58,] 9.702137e-09 1.940427e-08 0.99999999
 [59,] 6.239883e-09 1.247977e-08 0.99999999
 [60,] 3.027541e-09 6.055082e-09 1.00000000
 [61,] 2.310828e-09 4.621656e-09 1.00000000
 [62,] 3.962874e-09 7.925748e-09 1.00000000
 [63,] 1.947742e-09 3.895483e-09 1.00000000
 [64,] 9.205401e-10 1.841080e-09 1.00000000
 [65,] 1.201305e-09 2.402611e-09 1.00000000
 [66,] 1.472958e-09 2.945916e-09 1.00000000
 [67,] 1.849283e-09 3.698567e-09 1.00000000
 [68,] 2.092734e-09 4.185468e-09 1.00000000
 [69,] 1.180596e-09 2.361192e-09 1.00000000
 [70,] 9.282141e-08 1.856428e-07 0.99999991
 [71,] 5.662704e-08 1.132541e-07 0.99999994
 [72,] 2.912714e-08 5.825428e-08 0.99999997
 [73,] 2.378886e-08 4.757772e-08 0.99999998
 [74,] 2.948520e-08 5.897039e-08 0.99999997
 [75,] 1.540316e-08 3.080632e-08 0.99999998
 [76,] 1.027777e-08 2.055555e-08 0.99999999
 [77,] 5.291897e-09 1.058379e-08 0.99999999
 [78,] 2.930508e-09 5.861015e-09 1.00000000
 [79,] 1.500705e-09 3.001409e-09 1.00000000
 [80,] 7.425253e-10 1.485051e-09 1.00000000
 [81,] 4.100331e-10 8.200662e-10 1.00000000
 [82,] 8.559956e-10 1.711991e-09 1.00000000
 [83,] 4.167111e-10 8.334222e-10 1.00000000
 [84,] 4.762319e-09 9.524638e-09 1.00000000
 [85,] 2.589313e-09 5.178626e-09 1.00000000
 [86,] 3.729981e-09 7.459962e-09 1.00000000
 [87,] 1.912865e-09 3.825729e-09 1.00000000
 [88,] 2.349888e-09 4.699776e-09 1.00000000
 [89,] 3.707275e-09 7.414549e-09 1.00000000
 [90,] 2.165505e-09 4.331010e-09 1.00000000
 [91,] 1.235610e-09 2.471220e-09 1.00000000
 [92,] 7.249632e-10 1.449926e-09 1.00000000
 [93,] 4.499607e-09 8.999214e-09 1.00000000
 [94,] 1.392178e-08 2.784355e-08 0.99999999
 [95,] 1.661472e-08 3.322944e-08 0.99999998
 [96,] 4.488858e-08 8.977717e-08 0.99999996
 [97,] 6.231926e-08 1.246385e-07 0.99999994
 [98,] 1.086087e-07 2.172175e-07 0.99999989
 [99,] 1.209703e-07 2.419405e-07 0.99999988
[100,] 6.919013e-08 1.383803e-07 0.99999993
[101,] 1.663453e-05 3.326907e-05 0.99998337
[102,] 6.930133e-05 1.386027e-04 0.99993070
[103,] 8.277676e-05 1.655535e-04 0.99991722
[104,] 1.410675e-03 2.821351e-03 0.99858932
[105,] 5.662658e-03 1.132532e-02 0.99433734
[106,] 1.313781e-02 2.627562e-02 0.98686219
[107,] 1.701158e-02 3.402315e-02 0.98298842
[108,] 1.634806e-02 3.269612e-02 0.98365194
[109,] 2.717673e-02 5.435346e-02 0.97282327
[110,] 3.878321e-02 7.756642e-02 0.96121679
[111,] 1.655497e-01 3.310994e-01 0.83445031
[112,] 1.367791e-01 2.735583e-01 0.86322086
[113,] 4.167095e-01 8.334191e-01 0.58329047
[114,] 5.673656e-01 8.652687e-01 0.43263436
[115,] 7.360197e-01 5.279606e-01 0.26398031
[116,] 7.506454e-01 4.987091e-01 0.24935457
[117,] 7.576692e-01 4.846617e-01 0.24233083
[118,] 7.886989e-01 4.226021e-01 0.21130106
[119,] 7.608833e-01 4.782335e-01 0.23911674
[120,] 9.409151e-01 1.181698e-01 0.05908488
[121,] 9.294661e-01 1.410679e-01 0.07053394
[122,] 9.526242e-01 9.475152e-02 0.04737576
[123,] 9.402540e-01 1.194920e-01 0.05974600
[124,] 9.385974e-01 1.228052e-01 0.06140262
[125,] 9.214819e-01 1.570362e-01 0.07851811
[126,] 9.371767e-01 1.256465e-01 0.06282327
[127,] 9.369510e-01 1.260980e-01 0.06304899
[128,] 9.123557e-01 1.752886e-01 0.08764432
[129,] 8.831033e-01 2.337934e-01 0.11689672
[130,] 8.828426e-01 2.343148e-01 0.11715741
[131,] 8.502991e-01 2.994017e-01 0.14970086
[132,] 9.173186e-01 1.653629e-01 0.08268144
[133,] 9.009133e-01 1.981734e-01 0.09908668
[134,] 8.716060e-01 2.567881e-01 0.12839403
[135,] 8.433979e-01 3.132042e-01 0.15660210
[136,] 8.144469e-01 3.711062e-01 0.18555308
[137,] 7.888013e-01 4.223974e-01 0.21119872
[138,] 7.406728e-01 5.186545e-01 0.25932723
[139,] 6.792346e-01 6.415308e-01 0.32076539
[140,] 5.764006e-01 8.471987e-01 0.42359937
[141,] 4.671625e-01 9.343250e-01 0.53283751
[142,] 4.248337e-01 8.496675e-01 0.57516626
[143,] 2.964779e-01 5.929558e-01 0.70352210
[144,] 3.012924e-01 6.025847e-01 0.69870765
> postscript(file="/var/www/rcomp/tmp/1w23q1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/rcomp/tmp/2pt3t1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/rcomp/tmp/3pt3t1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/rcomp/tmp/4pt3t1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/rcomp/tmp/5h22w1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 161 
Frequency = 1 
           1            2            3            4            5            6 
-0.588528534  1.197979585  1.020263273  0.728425293  0.881025758  0.884768555 
           7            8            9           10           11           12 
-1.210722664  1.304725525  0.304725525  0.012887545  2.156090737 -0.588528534 
          13           14           15           16           17           18 
 1.304725525 -0.588528534  0.884991434 -0.588528534  0.461331040  1.041374070 
          19           20           21           22           23           24 
 0.119633486 -0.588528534 -0.147460767 -0.008262625 -0.588528534 -0.880366514 
          25           26           27           28           29           30 
 0.333434929  1.333434929 -0.118974242 -0.118974242  0.037631272  0.728425293 
          31           32           33           34           35           36 
 0.176829414 -0.588528534 -0.118974242  1.465073838 -0.118974242  0.304725525 
          37           38           39           40           41           42 
-0.695274475  0.596563506 -0.567417737  0.728425293  0.119594112 -0.118974242 
          43           44           45           46           47           48 
-0.588528534 -0.588528534  0.172863738 -0.008262625  1.152125061  1.304725525 
          49           50           51           52           53           54 
-0.275356878  0.881025758  0.304725525  0.304725525  0.276016122  2.028011121 
          55           56           57           58           59           60 
 0.283575355  0.881025758 -0.118974242  0.020223899 -0.118974242  0.304725525 
          61           62           63           64           65           66 
-1.308031957  0.304725525  0.795566184 -0.745134048 -0.275763261  0.421319607 
          67           68           69           70           71           72 
 0.403912234  0.108331456  0.276016122 -0.439482252  0.404135112 -0.275763261 
          73           74           75           76           77           78 
-0.735285908 -0.443670806  1.396575879  0.848985050  0.560517748 -1.735285908 
          79           80           81           82           83           84 
 0.108331456 -0.275763261  0.844796496  0.852355729 -0.183729403  0.716900384 
          85           86           87           88           89           90 
 0.845019374  0.264714092  0.404135112 -0.432145897  0.560517748 -0.172165120 
          91           92           93           94           95           96 
-0.275763261  1.716900384  0.421096728  0.972876112  0.264714092 -0.439482252 
          97           98           99          100          101          102 
-0.735285908 -0.027123888 -0.027123888  0.560517748  1.421096728  1.845019374 
         103          104          105          106          107          108 
-0.143678595  1.532031224  0.716900384  0.856321405  0.695973092 -0.744911170 
         109          110          111          112          113          114 
 0.752946142  2.401811941  0.546853173  2.964783488 -4.611657099  0.703458687 
         115          116          117          118          119          120 
 2.537267285 -0.723983878  1.575824828  0.144565828 -1.683710192 -0.008446130 
         121          122          123          124          125          126 
-1.855434172 -1.399431444 -1.983107405  0.152125061 -0.403025001 -1.395465768 
         127          128          129          130          131          132 
-0.267792535  1.308730575 -0.847874939 -1.847874939 -0.847874939 -1.687898746 
         133          134          135          136          137          138 
-0.847874939 -0.263826860 -1.840315707 -0.008446130 -0.292724877  1.283391851 
         139          140          141          142          143          144 
-1.410772848 -2.136119363 -0.012039687 -0.815383365 -0.971766001 -1.267792535 
         145          146          147          148          149          150 
-0.971766001  0.148382263 -1.435739454 -0.847874939 -0.971988879 -1.263603981 
         151          152          153          154          155          156 
-0.847874939 -1.847874939 -1.139712920 -0.559630516 -0.979513848 -0.300284110 
         157          158          159          160          161 
-1.267792535  1.732430343 -1.107221345 -1.263603981  0.159684293 
> postscript(file="/var/www/rcomp/tmp/6h22w1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 161 
Frequency = 1 
    lag(myerror, k = 1)      myerror
  0        -0.588528534           NA
  1         1.197979585 -0.588528534
  2         1.020263273  1.197979585
  3         0.728425293  1.020263273
  4         0.881025758  0.728425293
  5         0.884768555  0.881025758
  6        -1.210722664  0.884768555
  7         1.304725525 -1.210722664
  8         0.304725525  1.304725525
  9         0.012887545  0.304725525
 10         2.156090737  0.012887545
 11        -0.588528534  2.156090737
 12         1.304725525 -0.588528534
 13        -0.588528534  1.304725525
 14         0.884991434 -0.588528534
 15        -0.588528534  0.884991434
 16         0.461331040 -0.588528534
 17         1.041374070  0.461331040
 18         0.119633486  1.041374070
 19        -0.588528534  0.119633486
 20        -0.147460767 -0.588528534
 21        -0.008262625 -0.147460767
 22        -0.588528534 -0.008262625
 23        -0.880366514 -0.588528534
 24         0.333434929 -0.880366514
 25         1.333434929  0.333434929
 26        -0.118974242  1.333434929
 27        -0.118974242 -0.118974242
 28         0.037631272 -0.118974242
 29         0.728425293  0.037631272
 30         0.176829414  0.728425293
 31        -0.588528534  0.176829414
 32        -0.118974242 -0.588528534
 33         1.465073838 -0.118974242
 34        -0.118974242  1.465073838
 35         0.304725525 -0.118974242
 36        -0.695274475  0.304725525
 37         0.596563506 -0.695274475
 38        -0.567417737  0.596563506
 39         0.728425293 -0.567417737
 40         0.119594112  0.728425293
 41        -0.118974242  0.119594112
 42        -0.588528534 -0.118974242
 43        -0.588528534 -0.588528534
 44         0.172863738 -0.588528534
 45        -0.008262625  0.172863738
 46         1.152125061 -0.008262625
 47         1.304725525  1.152125061
 48        -0.275356878  1.304725525
 49         0.881025758 -0.275356878
 50         0.304725525  0.881025758
 51         0.304725525  0.304725525
 52         0.276016122  0.304725525
 53         2.028011121  0.276016122
 54         0.283575355  2.028011121
 55         0.881025758  0.283575355
 56        -0.118974242  0.881025758
 57         0.020223899 -0.118974242
 58        -0.118974242  0.020223899
 59         0.304725525 -0.118974242
 60        -1.308031957  0.304725525
 61         0.304725525 -1.308031957
 62         0.795566184  0.304725525
 63        -0.745134048  0.795566184
 64        -0.275763261 -0.745134048
 65         0.421319607 -0.275763261
 66         0.403912234  0.421319607
 67         0.108331456  0.403912234
 68         0.276016122  0.108331456
 69        -0.439482252  0.276016122
 70         0.404135112 -0.439482252
 71        -0.275763261  0.404135112
 72        -0.735285908 -0.275763261
 73        -0.443670806 -0.735285908
 74         1.396575879 -0.443670806
 75         0.848985050  1.396575879
 76         0.560517748  0.848985050
 77        -1.735285908  0.560517748
 78         0.108331456 -1.735285908
 79        -0.275763261  0.108331456
 80         0.844796496 -0.275763261
 81         0.852355729  0.844796496
 82        -0.183729403  0.852355729
 83         0.716900384 -0.183729403
 84         0.845019374  0.716900384
 85         0.264714092  0.845019374
 86         0.404135112  0.264714092
 87        -0.432145897  0.404135112
 88         0.560517748 -0.432145897
 89        -0.172165120  0.560517748
 90        -0.275763261 -0.172165120
 91         1.716900384 -0.275763261
 92         0.421096728  1.716900384
 93         0.972876112  0.421096728
 94         0.264714092  0.972876112
 95        -0.439482252  0.264714092
 96        -0.735285908 -0.439482252
 97        -0.027123888 -0.735285908
 98        -0.027123888 -0.027123888
 99         0.560517748 -0.027123888
100         1.421096728  0.560517748
101         1.845019374  1.421096728
102        -0.143678595  1.845019374
103         1.532031224 -0.143678595
104         0.716900384  1.532031224
105         0.856321405  0.716900384
106         0.695973092  0.856321405
107        -0.744911170  0.695973092
108         0.752946142 -0.744911170
109         2.401811941  0.752946142
110         0.546853173  2.401811941
111         2.964783488  0.546853173
112        -4.611657099  2.964783488
113         0.703458687 -4.611657099
114         2.537267285  0.703458687
115        -0.723983878  2.537267285
116         1.575824828 -0.723983878
117         0.144565828  1.575824828
118        -1.683710192  0.144565828
119        -0.008446130 -1.683710192
120        -1.855434172 -0.008446130
121        -1.399431444 -1.855434172
122        -1.983107405 -1.399431444
123         0.152125061 -1.983107405
124        -0.403025001  0.152125061
125        -1.395465768 -0.403025001
126        -0.267792535 -1.395465768
127         1.308730575 -0.267792535
128        -0.847874939  1.308730575
129        -1.847874939 -0.847874939
130        -0.847874939 -1.847874939
131        -1.687898746 -0.847874939
132        -0.847874939 -1.687898746
133        -0.263826860 -0.847874939
134        -1.840315707 -0.263826860
135        -0.008446130 -1.840315707
136        -0.292724877 -0.008446130
137         1.283391851 -0.292724877
138        -1.410772848  1.283391851
139        -2.136119363 -1.410772848
140        -0.012039687 -2.136119363
141        -0.815383365 -0.012039687
142        -0.971766001 -0.815383365
143        -1.267792535 -0.971766001
144        -0.971766001 -1.267792535
145         0.148382263 -0.971766001
146        -1.435739454  0.148382263
147        -0.847874939 -1.435739454
148        -0.971988879 -0.847874939
149        -1.263603981 -0.971988879
150        -0.847874939 -1.263603981
151        -1.847874939 -0.847874939
152        -1.139712920 -1.847874939
153        -0.559630516 -1.139712920
154        -0.979513848 -0.559630516
155        -0.300284110 -0.979513848
156        -1.267792535 -0.300284110
157         1.732430343 -1.267792535
158        -1.107221345  1.732430343
159        -1.263603981 -1.107221345
160         0.159684293 -1.263603981
161                  NA  0.159684293
> dum1 <- dum[2:length(myerror),]
> dum1
       lag(myerror, k = 1)      myerror
  [1,]         1.197979585 -0.588528534
  [2,]         1.020263273  1.197979585
  [3,]         0.728425293  1.020263273
  [4,]         0.881025758  0.728425293
  [5,]         0.884768555  0.881025758
  [6,]        -1.210722664  0.884768555
  [7,]         1.304725525 -1.210722664
  [8,]         0.304725525  1.304725525
  [9,]         0.012887545  0.304725525
 [10,]         2.156090737  0.012887545
 [11,]        -0.588528534  2.156090737
 [12,]         1.304725525 -0.588528534
 [13,]        -0.588528534  1.304725525
 [14,]         0.884991434 -0.588528534
 [15,]        -0.588528534  0.884991434
 [16,]         0.461331040 -0.588528534
 [17,]         1.041374070  0.461331040
 [18,]         0.119633486  1.041374070
 [19,]        -0.588528534  0.119633486
 [20,]        -0.147460767 -0.588528534
 [21,]        -0.008262625 -0.147460767
 [22,]        -0.588528534 -0.008262625
 [23,]        -0.880366514 -0.588528534
 [24,]         0.333434929 -0.880366514
 [25,]         1.333434929  0.333434929
 [26,]        -0.118974242  1.333434929
 [27,]        -0.118974242 -0.118974242
 [28,]         0.037631272 -0.118974242
 [29,]         0.728425293  0.037631272
 [30,]         0.176829414  0.728425293
 [31,]        -0.588528534  0.176829414
 [32,]        -0.118974242 -0.588528534
 [33,]         1.465073838 -0.118974242
 [34,]        -0.118974242  1.465073838
 [35,]         0.304725525 -0.118974242
 [36,]        -0.695274475  0.304725525
 [37,]         0.596563506 -0.695274475
 [38,]        -0.567417737  0.596563506
 [39,]         0.728425293 -0.567417737
 [40,]         0.119594112  0.728425293
 [41,]        -0.118974242  0.119594112
 [42,]        -0.588528534 -0.118974242
 [43,]        -0.588528534 -0.588528534
 [44,]         0.172863738 -0.588528534
 [45,]        -0.008262625  0.172863738
 [46,]         1.152125061 -0.008262625
 [47,]         1.304725525  1.152125061
 [48,]        -0.275356878  1.304725525
 [49,]         0.881025758 -0.275356878
 [50,]         0.304725525  0.881025758
 [51,]         0.304725525  0.304725525
 [52,]         0.276016122  0.304725525
 [53,]         2.028011121  0.276016122
 [54,]         0.283575355  2.028011121
 [55,]         0.881025758  0.283575355
 [56,]        -0.118974242  0.881025758
 [57,]         0.020223899 -0.118974242
 [58,]        -0.118974242  0.020223899
 [59,]         0.304725525 -0.118974242
 [60,]        -1.308031957  0.304725525
 [61,]         0.304725525 -1.308031957
 [62,]         0.795566184  0.304725525
 [63,]        -0.745134048  0.795566184
 [64,]        -0.275763261 -0.745134048
 [65,]         0.421319607 -0.275763261
 [66,]         0.403912234  0.421319607
 [67,]         0.108331456  0.403912234
 [68,]         0.276016122  0.108331456
 [69,]        -0.439482252  0.276016122
 [70,]         0.404135112 -0.439482252
 [71,]        -0.275763261  0.404135112
 [72,]        -0.735285908 -0.275763261
 [73,]        -0.443670806 -0.735285908
 [74,]         1.396575879 -0.443670806
 [75,]         0.848985050  1.396575879
 [76,]         0.560517748  0.848985050
 [77,]        -1.735285908  0.560517748
 [78,]         0.108331456 -1.735285908
 [79,]        -0.275763261  0.108331456
 [80,]         0.844796496 -0.275763261
 [81,]         0.852355729  0.844796496
 [82,]        -0.183729403  0.852355729
 [83,]         0.716900384 -0.183729403
 [84,]         0.845019374  0.716900384
 [85,]         0.264714092  0.845019374
 [86,]         0.404135112  0.264714092
 [87,]        -0.432145897  0.404135112
 [88,]         0.560517748 -0.432145897
 [89,]        -0.172165120  0.560517748
 [90,]        -0.275763261 -0.172165120
 [91,]         1.716900384 -0.275763261
 [92,]         0.421096728  1.716900384
 [93,]         0.972876112  0.421096728
 [94,]         0.264714092  0.972876112
 [95,]        -0.439482252  0.264714092
 [96,]        -0.735285908 -0.439482252
 [97,]        -0.027123888 -0.735285908
 [98,]        -0.027123888 -0.027123888
 [99,]         0.560517748 -0.027123888
[100,]         1.421096728  0.560517748
[101,]         1.845019374  1.421096728
[102,]        -0.143678595  1.845019374
[103,]         1.532031224 -0.143678595
[104,]         0.716900384  1.532031224
[105,]         0.856321405  0.716900384
[106,]         0.695973092  0.856321405
[107,]        -0.744911170  0.695973092
[108,]         0.752946142 -0.744911170
[109,]         2.401811941  0.752946142
[110,]         0.546853173  2.401811941
[111,]         2.964783488  0.546853173
[112,]        -4.611657099  2.964783488
[113,]         0.703458687 -4.611657099
[114,]         2.537267285  0.703458687
[115,]        -0.723983878  2.537267285
[116,]         1.575824828 -0.723983878
[117,]         0.144565828  1.575824828
[118,]        -1.683710192  0.144565828
[119,]        -0.008446130 -1.683710192
[120,]        -1.855434172 -0.008446130
[121,]        -1.399431444 -1.855434172
[122,]        -1.983107405 -1.399431444
[123,]         0.152125061 -1.983107405
[124,]        -0.403025001  0.152125061
[125,]        -1.395465768 -0.403025001
[126,]        -0.267792535 -1.395465768
[127,]         1.308730575 -0.267792535
[128,]        -0.847874939  1.308730575
[129,]        -1.847874939 -0.847874939
[130,]        -0.847874939 -1.847874939
[131,]        -1.687898746 -0.847874939
[132,]        -0.847874939 -1.687898746
[133,]        -0.263826860 -0.847874939
[134,]        -1.840315707 -0.263826860
[135,]        -0.008446130 -1.840315707
[136,]        -0.292724877 -0.008446130
[137,]         1.283391851 -0.292724877
[138,]        -1.410772848  1.283391851
[139,]        -2.136119363 -1.410772848
[140,]        -0.012039687 -2.136119363
[141,]        -0.815383365 -0.012039687
[142,]        -0.971766001 -0.815383365
[143,]        -1.267792535 -0.971766001
[144,]        -0.971766001 -1.267792535
[145,]         0.148382263 -0.971766001
[146,]        -1.435739454  0.148382263
[147,]        -0.847874939 -1.435739454
[148,]        -0.971988879 -0.847874939
[149,]        -1.263603981 -0.971988879
[150,]        -0.847874939 -1.263603981
[151,]        -1.847874939 -0.847874939
[152,]        -1.139712920 -1.847874939
[153,]        -0.559630516 -1.139712920
[154,]        -0.979513848 -0.559630516
[155,]        -0.300284110 -0.979513848
[156,]        -1.267792535 -0.300284110
[157,]         1.732430343 -1.267792535
[158,]        -1.107221345  1.732430343
[159,]        -1.263603981 -1.107221345
[160,]         0.159684293 -1.263603981
> z <- as.data.frame(dum1)
> z
    lag(myerror, k = 1)      myerror
1           1.197979585 -0.588528534
2           1.020263273  1.197979585
3           0.728425293  1.020263273
4           0.881025758  0.728425293
5           0.884768555  0.881025758
6          -1.210722664  0.884768555
7           1.304725525 -1.210722664
8           0.304725525  1.304725525
9           0.012887545  0.304725525
10          2.156090737  0.012887545
11         -0.588528534  2.156090737
12          1.304725525 -0.588528534
13         -0.588528534  1.304725525
14          0.884991434 -0.588528534
15         -0.588528534  0.884991434
16          0.461331040 -0.588528534
17          1.041374070  0.461331040
18          0.119633486  1.041374070
19         -0.588528534  0.119633486
20         -0.147460767 -0.588528534
21         -0.008262625 -0.147460767
22         -0.588528534 -0.008262625
23         -0.880366514 -0.588528534
24          0.333434929 -0.880366514
25          1.333434929  0.333434929
26         -0.118974242  1.333434929
27         -0.118974242 -0.118974242
28          0.037631272 -0.118974242
29          0.728425293  0.037631272
30          0.176829414  0.728425293
31         -0.588528534  0.176829414
32         -0.118974242 -0.588528534
33          1.465073838 -0.118974242
34         -0.118974242  1.465073838
35          0.304725525 -0.118974242
36         -0.695274475  0.304725525
37          0.596563506 -0.695274475
38         -0.567417737  0.596563506
39          0.728425293 -0.567417737
40          0.119594112  0.728425293
41         -0.118974242  0.119594112
42         -0.588528534 -0.118974242
43         -0.588528534 -0.588528534
44          0.172863738 -0.588528534
45         -0.008262625  0.172863738
46          1.152125061 -0.008262625
47          1.304725525  1.152125061
48         -0.275356878  1.304725525
49          0.881025758 -0.275356878
50          0.304725525  0.881025758
51          0.304725525  0.304725525
52          0.276016122  0.304725525
53          2.028011121  0.276016122
54          0.283575355  2.028011121
55          0.881025758  0.283575355
56         -0.118974242  0.881025758
57          0.020223899 -0.118974242
58         -0.118974242  0.020223899
59          0.304725525 -0.118974242
60         -1.308031957  0.304725525
61          0.304725525 -1.308031957
62          0.795566184  0.304725525
63         -0.745134048  0.795566184
64         -0.275763261 -0.745134048
65          0.421319607 -0.275763261
66          0.403912234  0.421319607
67          0.108331456  0.403912234
68          0.276016122  0.108331456
69         -0.439482252  0.276016122
70          0.404135112 -0.439482252
71         -0.275763261  0.404135112
72         -0.735285908 -0.275763261
73         -0.443670806 -0.735285908
74          1.396575879 -0.443670806
75          0.848985050  1.396575879
76          0.560517748  0.848985050
77         -1.735285908  0.560517748
78          0.108331456 -1.735285908
79         -0.275763261  0.108331456
80          0.844796496 -0.275763261
81          0.852355729  0.844796496
82         -0.183729403  0.852355729
83          0.716900384 -0.183729403
84          0.845019374  0.716900384
85          0.264714092  0.845019374
86          0.404135112  0.264714092
87         -0.432145897  0.404135112
88          0.560517748 -0.432145897
89         -0.172165120  0.560517748
90         -0.275763261 -0.172165120
91          1.716900384 -0.275763261
92          0.421096728  1.716900384
93          0.972876112  0.421096728
94          0.264714092  0.972876112
95         -0.439482252  0.264714092
96         -0.735285908 -0.439482252
97         -0.027123888 -0.735285908
98         -0.027123888 -0.027123888
99          0.560517748 -0.027123888
100         1.421096728  0.560517748
101         1.845019374  1.421096728
102        -0.143678595  1.845019374
103         1.532031224 -0.143678595
104         0.716900384  1.532031224
105         0.856321405  0.716900384
106         0.695973092  0.856321405
107        -0.744911170  0.695973092
108         0.752946142 -0.744911170
109         2.401811941  0.752946142
110         0.546853173  2.401811941
111         2.964783488  0.546853173
112        -4.611657099  2.964783488
113         0.703458687 -4.611657099
114         2.537267285  0.703458687
115        -0.723983878  2.537267285
116         1.575824828 -0.723983878
117         0.144565828  1.575824828
118        -1.683710192  0.144565828
119        -0.008446130 -1.683710192
120        -1.855434172 -0.008446130
121        -1.399431444 -1.855434172
122        -1.983107405 -1.399431444
123         0.152125061 -1.983107405
124        -0.403025001  0.152125061
125        -1.395465768 -0.403025001
126        -0.267792535 -1.395465768
127         1.308730575 -0.267792535
128        -0.847874939  1.308730575
129        -1.847874939 -0.847874939
130        -0.847874939 -1.847874939
131        -1.687898746 -0.847874939
132        -0.847874939 -1.687898746
133        -0.263826860 -0.847874939
134        -1.840315707 -0.263826860
135        -0.008446130 -1.840315707
136        -0.292724877 -0.008446130
137         1.283391851 -0.292724877
138        -1.410772848  1.283391851
139        -2.136119363 -1.410772848
140        -0.012039687 -2.136119363
141        -0.815383365 -0.012039687
142        -0.971766001 -0.815383365
143        -1.267792535 -0.971766001
144        -0.971766001 -1.267792535
145         0.148382263 -0.971766001
146        -1.435739454  0.148382263
147        -0.847874939 -1.435739454
148        -0.971988879 -0.847874939
149        -1.263603981 -0.971988879
150        -0.847874939 -1.263603981
151        -1.847874939 -0.847874939
152        -1.139712920 -1.847874939
153        -0.559630516 -1.139712920
154        -0.979513848 -0.559630516
155        -0.300284110 -0.979513848
156        -1.267792535 -0.300284110
157         1.732430343 -1.267792535
158        -1.107221345  1.732430343
159        -1.263603981 -1.107221345
160         0.159684293 -1.263603981
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/rcomp/tmp/7aujz1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/rcomp/tmp/8aujz1290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/rcomp/tmp/93l021290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/rcomp/tmp/103l021290522067.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/rcomp/tmp/11b76e1290522067.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/rcomp/tmp/12amxw1290522067.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/rcomp/tmp/13yndp1290522067.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/rcomp/tmp/1426bd1290522067.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/rcomp/tmp/15norj1290522067.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/rcomp/tmp/16qpqp1290522067.tab") 
+ }
> 
> try(system("convert tmp/1w23q1290522067.ps tmp/1w23q1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/2pt3t1290522067.ps tmp/2pt3t1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/3pt3t1290522067.ps tmp/3pt3t1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/4pt3t1290522067.ps tmp/4pt3t1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/5h22w1290522067.ps tmp/5h22w1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/6h22w1290522067.ps tmp/6h22w1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/7aujz1290522067.ps tmp/7aujz1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/8aujz1290522067.ps tmp/8aujz1290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/93l021290522067.ps tmp/93l021290522067.png",intern=TRUE))
character(0)
> try(system("convert tmp/103l021290522067.ps tmp/103l021290522067.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  5.480   2.280   7.689