R version 2.8.0 (2008-10-20)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
  Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(37,1,30,1,47,0,35,1,30,1,43,0,82,0,40,0,47,0,19,1,52,0,136,0,80,0,42,0,54,0,66,0,81,0,63,0,137,0,72,0,107,0,58,0,36,1,52,0,79,0,77,0,54,0,84,0,48,0,96,0,83,0,66,0,61,0,53,0,30,1,74,0,69,0,59,0,42,0,65,0,70,0,100,0,63,0,105,0,82,0,81,0,75,0,102,0,121,0,98,0,76,0,77,0,63,0,37,1,35,1,23,1,40,0,29,1,37,1,51,0,20,1,28,1,13,1,22,1,25,1,13,1,16,1,13,1,16,1,17,1,9,1,17,1,25,1,14,1,8,1,7,1,10,1,7,1,10,1,3,1),dim=c(2,80),dimnames=list(c('SKIA','x'),1:80))
>  y <- array(NA,dim=c(2,80),dimnames=list(c('SKIA','x'),1:80))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   SKIA x M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1    37 1  1  0  0  0  0  0  0  0  0   0   0  1
2    30 1  0  1  0  0  0  0  0  0  0   0   0  2
3    47 0  0  0  1  0  0  0  0  0  0   0   0  3
4    35 1  0  0  0  1  0  0  0  0  0   0   0  4
5    30 1  0  0  0  0  1  0  0  0  0   0   0  5
6    43 0  0  0  0  0  0  1  0  0  0   0   0  6
7    82 0  0  0  0  0  0  0  1  0  0   0   0  7
8    40 0  0  0  0  0  0  0  0  1  0   0   0  8
9    47 0  0  0  0  0  0  0  0  0  1   0   0  9
10   19 1  0  0  0  0  0  0  0  0  0   1   0 10
11   52 0  0  0  0  0  0  0  0  0  0   0   1 11
12  136 0  0  0  0  0  0  0  0  0  0   0   0 12
13   80 0  1  0  0  0  0  0  0  0  0   0   0 13
14   42 0  0  1  0  0  0  0  0  0  0   0   0 14
15   54 0  0  0  1  0  0  0  0  0  0   0   0 15
16   66 0  0  0  0  1  0  0  0  0  0   0   0 16
17   81 0  0  0  0  0  1  0  0  0  0   0   0 17
18   63 0  0  0  0  0  0  1  0  0  0   0   0 18
19  137 0  0  0  0  0  0  0  1  0  0   0   0 19
20   72 0  0  0  0  0  0  0  0  1  0   0   0 20
21  107 0  0  0  0  0  0  0  0  0  1   0   0 21
22   58 0  0  0  0  0  0  0  0  0  0   1   0 22
23   36 1  0  0  0  0  0  0  0  0  0   0   1 23
24   52 0  0  0  0  0  0  0  0  0  0   0   0 24
25   79 0  1  0  0  0  0  0  0  0  0   0   0 25
26   77 0  0  1  0  0  0  0  0  0  0   0   0 26
27   54 0  0  0  1  0  0  0  0  0  0   0   0 27
28   84 0  0  0  0  1  0  0  0  0  0   0   0 28
29   48 0  0  0  0  0  1  0  0  0  0   0   0 29
30   96 0  0  0  0  0  0  1  0  0  0   0   0 30
31   83 0  0  0  0  0  0  0  1  0  0   0   0 31
32   66 0  0  0  0  0  0  0  0  1  0   0   0 32
33   61 0  0  0  0  0  0  0  0  0  1   0   0 33
34   53 0  0  0  0  0  0  0  0  0  0   1   0 34
35   30 1  0  0  0  0  0  0  0  0  0   0   1 35
36   74 0  0  0  0  0  0  0  0  0  0   0   0 36
37   69 0  1  0  0  0  0  0  0  0  0   0   0 37
38   59 0  0  1  0  0  0  0  0  0  0   0   0 38
39   42 0  0  0  1  0  0  0  0  0  0   0   0 39
40   65 0  0  0  0  1  0  0  0  0  0   0   0 40
41   70 0  0  0  0  0  1  0  0  0  0   0   0 41
42  100 0  0  0  0  0  0  1  0  0  0   0   0 42
43   63 0  0  0  0  0  0  0  1  0  0   0   0 43
44  105 0  0  0  0  0  0  0  0  1  0   0   0 44
45   82 0  0  0  0  0  0  0  0  0  1   0   0 45
46   81 0  0  0  0  0  0  0  0  0  0   1   0 46
47   75 0  0  0  0  0  0  0  0  0  0   0   1 47
48  102 0  0  0  0  0  0  0  0  0  0   0   0 48
49  121 0  1  0  0  0  0  0  0  0  0   0   0 49
50   98 0  0  1  0  0  0  0  0  0  0   0   0 50
51   76 0  0  0  1  0  0  0  0  0  0   0   0 51
52   77 0  0  0  0  1  0  0  0  0  0   0   0 52
53   63 0  0  0  0  0  1  0  0  0  0   0   0 53
54   37 1  0  0  0  0  0  1  0  0  0   0   0 54
55   35 1  0  0  0  0  0  0  1  0  0   0   0 55
56   23 1  0  0  0  0  0  0  0  1  0   0   0 56
57   40 0  0  0  0  0  0  0  0  0  1   0   0 57
58   29 1  0  0  0  0  0  0  0  0  0   1   0 58
59   37 1  0  0  0  0  0  0  0  0  0   0   1 59
60   51 0  0  0  0  0  0  0  0  0  0   0   0 60
61   20 1  1  0  0  0  0  0  0  0  0   0   0 61
62   28 1  0  1  0  0  0  0  0  0  0   0   0 62
63   13 1  0  0  1  0  0  0  0  0  0   0   0 63
64   22 1  0  0  0  1  0  0  0  0  0   0   0 64
65   25 1  0  0  0  0  1  0  0  0  0   0   0 65
66   13 1  0  0  0  0  0  1  0  0  0   0   0 66
67   16 1  0  0  0  0  0  0  1  0  0   0   0 67
68   13 1  0  0  0  0  0  0  0  1  0   0   0 68
69   16 1  0  0  0  0  0  0  0  0  1   0   0 69
70   17 1  0  0  0  0  0  0  0  0  0   1   0 70
71    9 1  0  0  0  0  0  0  0  0  0   0   1 71
72   17 1  0  0  0  0  0  0  0  0  0   0   0 72
73   25 1  1  0  0  0  0  0  0  0  0   0   0 73
74   14 1  0  1  0  0  0  0  0  0  0   0   0 74
75    8 1  0  0  1  0  0  0  0  0  0   0   0 75
76    7 1  0  0  0  1  0  0  0  0  0   0   0 76
77   10 1  0  0  0  0  1  0  0  0  0   0   0 77
78    7 1  0  0  0  0  0  1  0  0  0   0   0 78
79   10 1  0  0  0  0  0  0  1  0  0   0   0 79
80    3 1  0  0  0  0  0  0  0  1  0   0   0 80
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            x           M1           M2           M3           M4  
    84.3432     -49.4382       2.0310      -9.7284     -24.4076      -8.3902  
         M5           M6           M7           M8           M9          M10  
   -12.4353      -7.7662       1.9029     -12.8565     -13.4598     -12.8827  
        M11            t  
    -7.5453      -0.0977  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-32.991 -11.522  -2.382   8.877  52.829 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  84.3432     9.0787   9.290 1.33e-13 ***
x           -49.4382     5.5031  -8.984 4.65e-13 ***
M1            2.0310    11.0270   0.184   0.8544    
M2           -9.7284    11.0137  -0.883   0.3803    
M3          -24.4076    10.9131  -2.237   0.0287 *  
M4           -8.3902    10.9906  -0.763   0.4479    
M5          -12.4353    10.9808  -1.132   0.2615    
M6           -7.7662    10.9721  -0.708   0.4816    
M7            1.9029    10.9646   0.174   0.8627    
M8          -12.8565    10.9582  -1.173   0.2449    
M9          -13.4598    11.2927  -1.192   0.2376    
M10         -12.8827    11.4577  -1.124   0.2649    
M11          -7.5453    11.6333  -0.649   0.5189    
t            -0.0977     0.1133  -0.863   0.3914    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 19.55 on 66 degrees of freedom
Multiple R-squared: 0.6866,	Adjusted R-squared: 0.6248 
F-statistic: 11.12 on 13 and 66 DF,  p-value: 4.189e-12 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
           [,1]         [,2]         [,3]
 [1,] 0.2800873 5.601747e-01 7.199127e-01
 [2,] 0.1758596 3.517193e-01 8.241404e-01
 [3,] 0.4386295 8.772591e-01 5.613705e-01
 [4,] 0.3125351 6.250703e-01 6.874649e-01
 [5,] 0.4381612 8.763224e-01 5.618388e-01
 [6,] 0.3413552 6.827104e-01 6.586448e-01
 [7,] 0.4847382 9.694764e-01 5.152618e-01
 [8,] 0.9940526 1.189483e-02 5.947416e-03
 [9,] 0.9901421 1.971575e-02 9.857875e-03
[10,] 0.9837362 3.252755e-02 1.626377e-02
[11,] 0.9771851 4.562978e-02 2.281489e-02
[12,] 0.9638807 7.223855e-02 3.611928e-02
[13,] 0.9770166 4.596670e-02 2.298335e-02
[14,] 0.9744512 5.109764e-02 2.554882e-02
[15,] 0.9794374 4.112528e-02 2.056264e-02
[16,] 0.9716042 5.679152e-02 2.839576e-02
[17,] 0.9669954 6.600925e-02 3.300463e-02
[18,] 0.9700642 5.987151e-02 2.993575e-02
[19,] 0.9558237 8.835251e-02 4.417626e-02
[20,] 0.9504154 9.916914e-02 4.958457e-02
[21,] 0.9597892 8.042164e-02 4.021082e-02
[22,] 0.9735766 5.284672e-02 2.642336e-02
[23,] 0.9912824 1.743525e-02 8.717625e-03
[24,] 0.9927076 1.458474e-02 7.292371e-03
[25,] 0.9918757 1.624850e-02 8.124250e-03
[26,] 0.9910861 1.782778e-02 8.913892e-03
[27,] 0.9973055 5.389084e-03 2.694542e-03
[28,] 0.9986080 2.784088e-03 1.392044e-03
[29,] 0.9977467 4.506573e-03 2.253287e-03
[30,] 0.9963286 7.342758e-03 3.671379e-03
[31,] 0.9942906 1.141888e-02 5.709440e-03
[32,] 0.9960569 7.886204e-03 3.943102e-03
[33,] 0.9998657 2.686915e-04 1.343457e-04
[34,] 0.9999712 5.768834e-05 2.884417e-05
[35,] 0.9999823 3.546519e-05 1.773259e-05
[36,] 0.9999960 7.901277e-06 3.950638e-06
[37,] 0.9999921 1.586949e-05 7.934744e-06
[38,] 0.9999877 2.464988e-05 1.232494e-05
[39,] 0.9999717 5.667281e-05 2.833641e-05
[40,] 0.9998987 2.026725e-04 1.013362e-04
[41,] 0.9997963 4.073827e-04 2.036914e-04
[42,] 0.9992636 1.472871e-03 7.364354e-04
[43,] 0.9997654 4.691819e-04 2.345910e-04
[44,] 0.9991441 1.711820e-03 8.559100e-04
[45,] 0.9996620 6.760709e-04 3.380355e-04
[46,] 0.9983557 3.288628e-03 1.644314e-03
[47,] 0.9929004 1.419923e-02 7.099613e-03
> postscript(file="/var/www/html/freestat/rcomp/tmp/10vt91291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/20vt91291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/30vt91291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/4a4au1291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/5a4au1291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 80 
Frequency = 1 
          1           2           3           4           5           6 
  0.1617020   5.0188449 -12.6424577   8.8759877   8.0188449 -32.9907701 
          7           8           9          10          11          12 
 -3.5621986 -30.7050558 -23.0040824  -2.0452915 -23.7231756  52.8292509 
         13          14          15          16          17          18 
 -5.1040638 -31.2469209  -4.4700372  -8.3897781  10.7530791 -11.8183495 
         19          20          21          22          23          24 
 52.6102219   2.4673648  38.1683381 -11.3110573  10.8874313 -29.9983285 
         25          26          27          28          29          30 
 -4.9316433   4.9254996  -3.2976166  10.7826425 -21.0745004  22.3540710 
         31          32          33          34          35          36 
 -0.2173575  -2.3602147  -6.6592413 -15.1386368   6.0598518  -6.8259080 
         37          38          39          40          41          42 
-13.7592227 -11.9020799 -14.1251961  -7.0449370   2.0979201  27.5264916 
         43          44          45          46          47          48 
-19.0449370  37.8122058  15.5131792  14.0337838   2.7940860  22.3465125 
         49          50          51          52          53          54 
 39.4131978  28.2703407  21.0472244   6.1274835  -3.7296593  15.1370985 
         55          56          57          58          59          60 
  3.5656699   6.4228127 -25.3144002  12.6443907  15.4046929 -27.4810669 
         61          62          63          64          65          66 
-10.9761953   8.8809476   8.6578313   1.7380904   8.8809476  -7.6904810 
         67          68          69          70          71          72 
-14.2619096  -2.4047667   1.2962066   1.8168112 -11.4228865 -10.8704600 
         73          74          75          76          77          78 
 -4.8037747  -3.9466319   4.8302519 -12.0894890  -4.9466319 -12.5180605 
         79          80 
-19.0894890 -11.2323462 
> postscript(file="/var/www/html/freestat/rcomp/tmp/6a4au1291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 80 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0           0.1617020          NA
 1           5.0188449   0.1617020
 2         -12.6424577   5.0188449
 3           8.8759877 -12.6424577
 4           8.0188449   8.8759877
 5         -32.9907701   8.0188449
 6          -3.5621986 -32.9907701
 7         -30.7050558  -3.5621986
 8         -23.0040824 -30.7050558
 9          -2.0452915 -23.0040824
10         -23.7231756  -2.0452915
11          52.8292509 -23.7231756
12          -5.1040638  52.8292509
13         -31.2469209  -5.1040638
14          -4.4700372 -31.2469209
15          -8.3897781  -4.4700372
16          10.7530791  -8.3897781
17         -11.8183495  10.7530791
18          52.6102219 -11.8183495
19           2.4673648  52.6102219
20          38.1683381   2.4673648
21         -11.3110573  38.1683381
22          10.8874313 -11.3110573
23         -29.9983285  10.8874313
24          -4.9316433 -29.9983285
25           4.9254996  -4.9316433
26          -3.2976166   4.9254996
27          10.7826425  -3.2976166
28         -21.0745004  10.7826425
29          22.3540710 -21.0745004
30          -0.2173575  22.3540710
31          -2.3602147  -0.2173575
32          -6.6592413  -2.3602147
33         -15.1386368  -6.6592413
34           6.0598518 -15.1386368
35          -6.8259080   6.0598518
36         -13.7592227  -6.8259080
37         -11.9020799 -13.7592227
38         -14.1251961 -11.9020799
39          -7.0449370 -14.1251961
40           2.0979201  -7.0449370
41          27.5264916   2.0979201
42         -19.0449370  27.5264916
43          37.8122058 -19.0449370
44          15.5131792  37.8122058
45          14.0337838  15.5131792
46           2.7940860  14.0337838
47          22.3465125   2.7940860
48          39.4131978  22.3465125
49          28.2703407  39.4131978
50          21.0472244  28.2703407
51           6.1274835  21.0472244
52          -3.7296593   6.1274835
53          15.1370985  -3.7296593
54           3.5656699  15.1370985
55           6.4228127   3.5656699
56         -25.3144002   6.4228127
57          12.6443907 -25.3144002
58          15.4046929  12.6443907
59         -27.4810669  15.4046929
60         -10.9761953 -27.4810669
61           8.8809476 -10.9761953
62           8.6578313   8.8809476
63           1.7380904   8.6578313
64           8.8809476   1.7380904
65          -7.6904810   8.8809476
66         -14.2619096  -7.6904810
67          -2.4047667 -14.2619096
68           1.2962066  -2.4047667
69           1.8168112   1.2962066
70         -11.4228865   1.8168112
71         -10.8704600 -11.4228865
72          -4.8037747 -10.8704600
73          -3.9466319  -4.8037747
74           4.8302519  -3.9466319
75         -12.0894890   4.8302519
76          -4.9466319 -12.0894890
77         -12.5180605  -4.9466319
78         -19.0894890 -12.5180605
79         -11.2323462 -19.0894890
80                  NA -11.2323462
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]           5.0188449   0.1617020
 [2,]         -12.6424577   5.0188449
 [3,]           8.8759877 -12.6424577
 [4,]           8.0188449   8.8759877
 [5,]         -32.9907701   8.0188449
 [6,]          -3.5621986 -32.9907701
 [7,]         -30.7050558  -3.5621986
 [8,]         -23.0040824 -30.7050558
 [9,]          -2.0452915 -23.0040824
[10,]         -23.7231756  -2.0452915
[11,]          52.8292509 -23.7231756
[12,]          -5.1040638  52.8292509
[13,]         -31.2469209  -5.1040638
[14,]          -4.4700372 -31.2469209
[15,]          -8.3897781  -4.4700372
[16,]          10.7530791  -8.3897781
[17,]         -11.8183495  10.7530791
[18,]          52.6102219 -11.8183495
[19,]           2.4673648  52.6102219
[20,]          38.1683381   2.4673648
[21,]         -11.3110573  38.1683381
[22,]          10.8874313 -11.3110573
[23,]         -29.9983285  10.8874313
[24,]          -4.9316433 -29.9983285
[25,]           4.9254996  -4.9316433
[26,]          -3.2976166   4.9254996
[27,]          10.7826425  -3.2976166
[28,]         -21.0745004  10.7826425
[29,]          22.3540710 -21.0745004
[30,]          -0.2173575  22.3540710
[31,]          -2.3602147  -0.2173575
[32,]          -6.6592413  -2.3602147
[33,]         -15.1386368  -6.6592413
[34,]           6.0598518 -15.1386368
[35,]          -6.8259080   6.0598518
[36,]         -13.7592227  -6.8259080
[37,]         -11.9020799 -13.7592227
[38,]         -14.1251961 -11.9020799
[39,]          -7.0449370 -14.1251961
[40,]           2.0979201  -7.0449370
[41,]          27.5264916   2.0979201
[42,]         -19.0449370  27.5264916
[43,]          37.8122058 -19.0449370
[44,]          15.5131792  37.8122058
[45,]          14.0337838  15.5131792
[46,]           2.7940860  14.0337838
[47,]          22.3465125   2.7940860
[48,]          39.4131978  22.3465125
[49,]          28.2703407  39.4131978
[50,]          21.0472244  28.2703407
[51,]           6.1274835  21.0472244
[52,]          -3.7296593   6.1274835
[53,]          15.1370985  -3.7296593
[54,]           3.5656699  15.1370985
[55,]           6.4228127   3.5656699
[56,]         -25.3144002   6.4228127
[57,]          12.6443907 -25.3144002
[58,]          15.4046929  12.6443907
[59,]         -27.4810669  15.4046929
[60,]         -10.9761953 -27.4810669
[61,]           8.8809476 -10.9761953
[62,]           8.6578313   8.8809476
[63,]           1.7380904   8.6578313
[64,]           8.8809476   1.7380904
[65,]          -7.6904810   8.8809476
[66,]         -14.2619096  -7.6904810
[67,]          -2.4047667 -14.2619096
[68,]           1.2962066  -2.4047667
[69,]           1.8168112   1.2962066
[70,]         -11.4228865   1.8168112
[71,]         -10.8704600 -11.4228865
[72,]          -4.8037747 -10.8704600
[73,]          -3.9466319  -4.8037747
[74,]           4.8302519  -3.9466319
[75,]         -12.0894890   4.8302519
[76,]          -4.9466319 -12.0894890
[77,]         -12.5180605  -4.9466319
[78,]         -19.0894890 -12.5180605
[79,]         -11.2323462 -19.0894890
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1            5.0188449   0.1617020
2          -12.6424577   5.0188449
3            8.8759877 -12.6424577
4            8.0188449   8.8759877
5          -32.9907701   8.0188449
6           -3.5621986 -32.9907701
7          -30.7050558  -3.5621986
8          -23.0040824 -30.7050558
9           -2.0452915 -23.0040824
10         -23.7231756  -2.0452915
11          52.8292509 -23.7231756
12          -5.1040638  52.8292509
13         -31.2469209  -5.1040638
14          -4.4700372 -31.2469209
15          -8.3897781  -4.4700372
16          10.7530791  -8.3897781
17         -11.8183495  10.7530791
18          52.6102219 -11.8183495
19           2.4673648  52.6102219
20          38.1683381   2.4673648
21         -11.3110573  38.1683381
22          10.8874313 -11.3110573
23         -29.9983285  10.8874313
24          -4.9316433 -29.9983285
25           4.9254996  -4.9316433
26          -3.2976166   4.9254996
27          10.7826425  -3.2976166
28         -21.0745004  10.7826425
29          22.3540710 -21.0745004
30          -0.2173575  22.3540710
31          -2.3602147  -0.2173575
32          -6.6592413  -2.3602147
33         -15.1386368  -6.6592413
34           6.0598518 -15.1386368
35          -6.8259080   6.0598518
36         -13.7592227  -6.8259080
37         -11.9020799 -13.7592227
38         -14.1251961 -11.9020799
39          -7.0449370 -14.1251961
40           2.0979201  -7.0449370
41          27.5264916   2.0979201
42         -19.0449370  27.5264916
43          37.8122058 -19.0449370
44          15.5131792  37.8122058
45          14.0337838  15.5131792
46           2.7940860  14.0337838
47          22.3465125   2.7940860
48          39.4131978  22.3465125
49          28.2703407  39.4131978
50          21.0472244  28.2703407
51           6.1274835  21.0472244
52          -3.7296593   6.1274835
53          15.1370985  -3.7296593
54           3.5656699  15.1370985
55           6.4228127   3.5656699
56         -25.3144002   6.4228127
57          12.6443907 -25.3144002
58          15.4046929  12.6443907
59         -27.4810669  15.4046929
60         -10.9761953 -27.4810669
61           8.8809476 -10.9761953
62           8.6578313   8.8809476
63           1.7380904   8.6578313
64           8.8809476   1.7380904
65          -7.6904810   8.8809476
66         -14.2619096  -7.6904810
67          -2.4047667 -14.2619096
68           1.2962066  -2.4047667
69           1.8168112   1.2962066
70         -11.4228865   1.8168112
71         -10.8704600 -11.4228865
72          -4.8037747 -10.8704600
73          -3.9466319  -4.8037747
74           4.8302519  -3.9466319
75         -12.0894890   4.8302519
76          -4.9466319 -12.0894890
77         -12.5180605  -4.9466319
78         -19.0894890 -12.5180605
79         -11.2323462 -19.0894890
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/7leax1291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/8wn901291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/9wn901291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/freestat/rcomp/tmp/10pw831291143727.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/freestat/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/freestat/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/11sfpr1291143727.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/12df5e1291143727.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/13r7l51291143727.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/145i4o1291143728.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/freestat/rcomp/tmp/15r02c1291143728.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/freestat/rcomp/tmp/16uj1i1291143728.tab") 
+ }
> 
> try(system("convert tmp/10vt91291143727.ps tmp/10vt91291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/20vt91291143727.ps tmp/20vt91291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/30vt91291143727.ps tmp/30vt91291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/4a4au1291143727.ps tmp/4a4au1291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/5a4au1291143727.ps tmp/5a4au1291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/6a4au1291143727.ps tmp/6a4au1291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/7leax1291143727.ps tmp/7leax1291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/8wn901291143727.ps tmp/8wn901291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/9wn901291143727.ps tmp/9wn901291143727.png",intern=TRUE))
character(0)
> try(system("convert tmp/10pw831291143727.ps tmp/10pw831291143727.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  4.026   2.456   4.483