R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(2564,2820,3508,3088,3299,2939,3320,3418,3604,3495,4163,4882,2211,3260,2992,2425,2707,3244,3965,3315,3333,3583,4021,4904,2252,2952,3573,3048,3059,2731,3563,3092,3478,3478,4308,5029,2075,3264,3308,3688,3136,2824,3644,4694,2914,3686,4358,5587,2265,3685,3754,3708,3210,3517,3905,3670,4221,4404,5086,5725) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '0' > par2 = '0.0' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sma1 0.5484 -0.3616 -0.3180 -0.9998 s.e. 0.5327 0.1965 0.6051 0.4772 sigma^2 estimated as 0.00511: log likelihood = 22.56, aic = -35.11 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 37 End = 60 Frequency = 1 [1] 7.744950 7.998032 8.114569 7.953013 8.011960 7.994602 8.191222 8.094326 [9] 8.150130 8.158941 8.328247 8.515377 7.753772 8.005618 8.115540 7.950803 [17] 8.010397 7.994544 8.191756 8.094640 8.150109 8.158816 8.328186 8.515389 $se Time Series: Start = 37 End = 60 Frequency = 1 [1] 0.08316402 0.08512307 0.08708182 0.08865985 0.08869317 0.08881591 [7] 0.08887882 0.08887064 0.08887660 0.08878128 0.08866134 0.08854656 [13] 0.08858010 0.08869509 0.08881694 0.08891549 0.08891692 0.08892488 [19] 0.08892491 0.08891709 0.08891563 0.08881799 0.08869853 0.08858271 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 7.581949 7.831191 7.943889 7.779240 7.838121 7.820523 8.017020 7.920140 [9] 7.975932 7.984930 8.154470 8.341826 7.580155 7.831776 7.941459 7.776529 [17] 7.836120 7.820251 8.017463 7.920362 7.975834 7.984733 8.154337 8.341767 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 37 End = 60 Frequency = 1 [1] 7.907952 8.164873 8.285250 8.126787 8.185799 8.168681 8.365425 8.268513 [9] 8.324328 8.332952 8.502023 8.688928 7.927389 8.179460 8.289621 8.125077 [17] 8.184674 8.168837 8.366049 8.268917 8.324384 8.332900 8.502035 8.689011 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 2564.000 2820.000 3508.000 3088.000 3299.000 2939.000 3320.000 3418.000 [9] 3604.000 3495.000 4163.000 4882.000 2211.000 3260.000 2992.000 2425.000 [17] 2707.000 3244.000 3965.000 3315.000 3333.000 3583.000 4021.000 4904.000 [25] 2252.000 2952.000 3573.000 3048.000 3059.000 2731.000 3563.000 3092.000 [33] 3478.000 3478.000 4308.000 5029.000 2309.878 2975.097 3342.818 2844.132 [41] 3016.824 2964.911 3609.131 3275.829 3463.829 3494.485 4139.153 4990.927 [49] 2330.346 2997.752 3346.065 2837.853 3012.112 2964.738 3611.057 3276.856 [57] 3463.757 3494.049 4138.901 4990.986 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 37 End = 60 Frequency = 1 [1] 0.09032573 0.09263604 0.09495488 0.09682950 0.09686914 0.09701520 [7] 0.09709008 0.09708035 0.09708744 0.09697399 0.09683128 0.09669473 [13] 0.09673462 0.09687142 0.09701644 0.09713374 0.09713544 0.09714491 [19] 0.09714495 0.09713564 0.09713390 0.09701768 0.09687552 0.09673773 > postscript(file="/var/wessaorg/rcomp/tmp/1lhip1322838790.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/wessaorg/rcomp/tmp/2zw641322838790.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3jdhx1322838790.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/44fjf1322838790.tab") > > try(system("convert tmp/1lhip1322838790.ps tmp/1lhip1322838790.png",intern=TRUE)) character(0) > try(system("convert tmp/2zw641322838790.ps tmp/2zw641322838790.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.965 0.127 1.087