R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(117541.78,116587,116809,122819.55,116955,117186,117265,117536,117781,117928,120437.52,121753.21,119369.88,118622,118885,124998.3,119369,119647,119879,120075,120295,120538,123250.68,124631.03,122443.31,121532,121844,128241.75,122391,122644,122927,122909,123417,123756,126540.18,128088.74,125874.28,124817,124961,131499.9,125639,125851,125970,126322,126540,126733,129557.34,131179.77,128754.8,127890,127996,134790.6,128585,128851,129142,129334,129536,129944,132842.76,134447.96,132088.81,130902,131374,138243,131885,131839,132002,132005,132127,132116,134993.94,136459.55) > par10 = 'FALSE' > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '0.1' > par1 = '12' > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.6984 0.1223 0.1535 -0.8807 -0.3677 -0.3503 -0.4205 s.e. 0.1863 0.1776 0.1636 0.1229 0.6654 0.3646 0.9077 sigma^2 estimated as 8.257e-08: log likelihood = 311.27, aic = -606.54 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 61 End = 72 Frequency = 1 [1] 3.251403 3.249123 3.249820 3.266395 3.251340 3.252074 3.252768 3.253175 [9] 3.254120 3.254972 3.262180 3.266090 $se Time Series: Start = 61 End = 72 Frequency = 1 [1] 0.0002883221 0.0003723049 0.0004399961 0.0005169802 0.0005922967 [6] 0.0006664984 0.0007414966 0.0008170443 0.0008931203 0.0009698615 [11] 0.0010472939 0.0011253826 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 3.250838 3.248393 3.248958 3.265382 3.250179 3.250768 3.251315 3.251573 [9] 3.252369 3.253071 3.260128 3.263884 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 61 End = 72 Frequency = 1 [1] 3.251968 3.249853 3.250683 3.267409 3.252501 3.253380 3.254222 3.254776 [9] 3.255870 3.256873 3.264233 3.268296 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 117541.8 116587.0 116809.0 122819.6 116955.0 117186.0 117265.0 117536.0 [9] 117781.0 117928.0 120437.5 121753.2 119369.9 118622.0 118885.0 124998.3 [17] 119369.0 119647.0 119879.0 120075.0 120295.0 120538.0 123250.7 124631.0 [25] 122443.3 121532.0 121844.0 128241.8 122391.0 122644.0 122927.0 122909.0 [33] 123417.0 123756.0 126540.2 128088.7 125874.3 124817.0 124961.0 131499.9 [41] 125639.0 125851.0 125970.0 126322.0 126540.0 126733.0 129557.3 131179.8 [49] 128754.8 127890.0 127996.0 134790.6 128585.0 128851.0 129142.0 129334.0 [57] 129536.0 129944.0 132842.8 134448.0 132040.7 131117.8 131399.4 138257.2 [65] 132015.0 132313.5 132596.3 132762.1 133148.3 133497.3 136483.3 138128.0 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 61 End = 72 Frequency = 1 [1] 0.0008874562 0.0011470215 0.0013555269 0.0015849350 0.0018246302 [6] 0.0020531652 0.0022841751 0.0025170999 0.0027512366 0.0029874739 [11] 0.0032195167 0.0034561474 > postscript(file="/var/www/rcomp/tmp/197qp1322930764.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2vxon1322930764.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/34f6y1322930764.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/4hw2g1322930764.tab") > > try(system("convert tmp/197qp1322930764.ps tmp/197qp1322930764.png",intern=TRUE)) character(0) > try(system("convert tmp/2vxon1322930764.ps tmp/2vxon1322930764.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.360 0.400 3.758