R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(276986 + ,260633 + ,291551 + ,275383 + ,275302 + ,231693 + ,238829 + ,274215 + ,277808 + ,299060 + ,286629 + ,232313 + ,294053 + ,267510 + ,309739 + ,280733 + ,287298 + ,235672 + ,256449 + ,288997 + ,290789 + ,321898 + ,291834 + ,241380 + ,295469 + ,258200 + ,306102 + ,281480 + ,283101 + ,237414 + ,274834 + ,299340 + ,300383 + ,340862 + ,318794 + ,265740 + ,322656 + ,281563 + ,323461 + ,312579 + ,310784 + ,262785 + ,273754 + ,320036 + ,310336 + ,342206 + ,320052 + ,265582 + ,326988 + ,300713 + ,346414 + ,317325 + ,326208 + ,270657 + ,278158 + ,324584 + ,321801 + ,343542 + ,354040 + ,278179 + ,330246 + ,307344 + ,375874 + ,335309 + ,339271 + ,280264 + ,293689 + ,341161 + ,345097 + ,368712 + ,369403 + ,288384 + ,340981 + ,319072 + ,374214 + ,344529 + ,337271 + ,281016 + ,282224 + ,320984 + ,325426 + ,366276 + ,380296 + ,300727 + ,359326 + ,327610 + ,383563 + ,352405 + ,329351 + ,294486 + ,333454 + ,334339 + ,358000 + ,396057 + ,386976 + ,307155 + ,363909 + ,344700 + ,397561 + ,376791 + ,337085 + ,299252 + ,323136 + ,329091 + ,346991 + ,461999 + ,436533 + ,360372 + ,415467 + ,382110 + ,432197 + ,424254 + ,386728 + ,354508 + ,375765 + ,367986 + ,402378 + ,426516 + ,433313 + ,338461 + ,416834 + ,381099 + ,445673 + ,412408 + ,393997 + ,348241 + ,380134 + ,373688 + ,393588 + ,434192 + ,430731 + ,344468 + ,411891 + ,370497 + ,437305 + ,411270 + ,385495 + ,341273 + ,384217 + ,373223 + ,415771 + ,448634 + ,454341 + ,350297 + ,419104 + ,398027 + ,456059 + ,430052 + ,399757 + ,362731 + ,384896 + ,385349 + ,432289 + ,468891 + ,442702 + ,370178 + ,439400 + ,393900 + ,468700 + ,438800 + ,430100 + ,366300 + ,391000 + ,380900 + ,431400 + ,465400 + ,471500 + ,387500 + ,446400 + ,421500 + ,504800 + ,492071 + ,421253 + ,396682 + ,428000 + ,421900 + ,465600 + ,525793 + ,499855 + ,435287 + ,479499 + ,473027 + ,554410 + ,489574 + ,462157 + ,420331) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '2' > par2 = '0.5' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sma1 -0.5191 -0.2079 -0.9998 -0.5667 s.e. 0.0777 0.0829 0.0194 0.0722 sigma^2 estimated as 115.8: log likelihood = -616.27, aic = 1242.53 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 175 End = 186 Frequency = 1 [1] 648.6534 641.4670 677.7499 705.0303 702.1656 636.5640 687.3622 663.0283 [9] 718.7142 703.0918 671.8763 640.4881 $se Time Series: Start = 175 End = 186 Frequency = 1 [1] 10.80005 12.01995 13.42566 15.07011 16.34598 17.59052 18.78746 19.91020 [9] 20.99247 22.03609 23.04418 24.02310 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 175 End = 186 Frequency = 1 [1] 627.4853 617.9079 651.4357 675.4929 670.1275 602.0866 650.5388 624.0043 [9] 677.5690 659.9010 626.7097 593.4029 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 175 End = 186 Frequency = 1 [1] 669.8215 665.0261 704.0642 734.5677 734.2037 671.0414 724.1856 702.0523 [9] 759.8595 746.2825 717.0429 687.5734 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 276986.0 260633.0 291551.0 275383.0 275302.0 231693.0 238829.0 274215.0 [9] 277808.0 299060.0 286629.0 232313.0 294053.0 267510.0 309739.0 280733.0 [17] 287298.0 235672.0 256449.0 288997.0 290789.0 321898.0 291834.0 241380.0 [25] 295469.0 258200.0 306102.0 281480.0 283101.0 237414.0 274834.0 299340.0 [33] 300383.0 340862.0 318794.0 265740.0 322656.0 281563.0 323461.0 312579.0 [41] 310784.0 262785.0 273754.0 320036.0 310336.0 342206.0 320052.0 265582.0 [49] 326988.0 300713.0 346414.0 317325.0 326208.0 270657.0 278158.0 324584.0 [57] 321801.0 343542.0 354040.0 278179.0 330246.0 307344.0 375874.0 335309.0 [65] 339271.0 280264.0 293689.0 341161.0 345097.0 368712.0 369403.0 288384.0 [73] 340981.0 319072.0 374214.0 344529.0 337271.0 281016.0 282224.0 320984.0 [81] 325426.0 366276.0 380296.0 300727.0 359326.0 327610.0 383563.0 352405.0 [89] 329351.0 294486.0 333454.0 334339.0 358000.0 396057.0 386976.0 307155.0 [97] 363909.0 344700.0 397561.0 376791.0 337085.0 299252.0 323136.0 329091.0 [105] 346991.0 461999.0 436533.0 360372.0 415467.0 382110.0 432197.0 424254.0 [113] 386728.0 354508.0 375765.0 367986.0 402378.0 426516.0 433313.0 338461.0 [121] 416834.0 381099.0 445673.0 412408.0 393997.0 348241.0 380134.0 373688.0 [129] 393588.0 434192.0 430731.0 344468.0 411891.0 370497.0 437305.0 411270.0 [137] 385495.0 341273.0 384217.0 373223.0 415771.0 448634.0 454341.0 350297.0 [145] 419104.0 398027.0 456059.0 430052.0 399757.0 362731.0 384896.0 385349.0 [153] 432289.0 468891.0 442702.0 370178.0 439400.0 393900.0 468700.0 438800.0 [161] 430100.0 366300.0 391000.0 380900.0 431400.0 465400.0 471500.0 387500.0 [169] 446400.0 421500.0 504800.0 492071.0 421253.0 396682.0 420751.2 411479.9 [177] 459345.0 497067.8 493036.6 405213.7 472466.8 439606.5 516550.1 494338.0 [185] 451417.7 410225.1 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 175 End = 186 Frequency = 1 [1] 0.03384325 0.03816465 0.04038745 0.04364577 0.04762093 0.05676376 [7] 0.05612966 0.06182582 0.06008888 0.06460870 0.07090219 0.07777231 > postscript(file="/var/wessaorg/rcomp/tmp/1cg5m1323113666.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/wessaorg/rcomp/tmp/2cttx1323113666.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3gfxd1323113666.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4wibr1323113666.tab") > > try(system("convert tmp/1cg5m1323113666.ps tmp/1cg5m1323113666.png",intern=TRUE)) character(0) > try(system("convert tmp/2cttx1323113666.ps tmp/2cttx1323113666.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.428 0.119 1.550