R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(1770,2203,2836,1976,2837,2150,2180,2631,1781,2327,2260,2051,2250,2102,2957,2485,2871,2447,2570,2622,1840,2682,2369,2119,2531,2214,3206,2709,2734,2348,2702,2642,2064,2647,2534,2297,2718,2321,3112,2664,2808,2668,2934,2616,2228,2463,2416,2407,2582,2101,3305,2818,2401,3019,2507,2948,2210,2467,2596,2451) > par1 = '12' > par1 <- as.numeric(par1) > (n <- length(x)) [1] 60 > (np <- floor(n / par1)) [1] 5 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [1,] 1770 2250 2531 2718 2582 [2,] 2203 2102 2214 2321 2101 [3,] 2836 2957 3206 3112 3305 [4,] 1976 2485 2709 2664 2818 [5,] 2837 2871 2734 2808 2401 [6,] 2150 2447 2348 2668 3019 [7,] 2180 2570 2702 2934 2507 [8,] 2631 2622 2642 2616 2948 [9,] 1781 1840 2064 2228 2210 [10,] 2327 2682 2647 2463 2467 [11,] 2260 2369 2534 2416 2596 [12,] 2051 2119 2297 2407 2451 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 2250.167 2442.833 2552.333 2612.917 2617.083 > arr.sd [1] 359.4569 327.8084 299.2273 260.0631 347.3658 > arr.range [1] 1067 1117 1142 884 1204 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean 713.3406 -0.1581 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) 15.407 -1.234 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean 1166.18612 -0.03342 > postscript(file="/var/wessaorg/rcomp/tmp/1vugh1323117070.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/2n9911323117070.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/35qiw1323117070.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/49pap1323117070.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/5ew621323117070.tab") > > try(system("convert tmp/1vugh1323117070.ps tmp/1vugh1323117070.png",intern=TRUE)) character(0) > try(system("convert tmp/2n9911323117070.ps tmp/2n9911323117070.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.606 0.114 0.721