R version 2.12.1 (2010-12-16) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(655362,873127,1107897,1555964,1671159,1493308,2957796,2638691,1305669,1280496,921900,867888,652586,913831,1108544,1555827,1699283,1509458,3268975,2425016,1312703,1365498,934453,775019,651142,843192,1146766,1652601,1465906,1652734,2922334,2702805,1458956,1410363,1019279,936574,708917,885295,1099663,1576220,1487870,1488635,2882530,2677026,1404398,1344370,936865,872705,628151,953712,1160384,1400618,1661511,1495347,2918786,2775677,1407026,1370199,964526,850851,683118,847224,1073256,1514326,1503734,1507712,2865698,2788128,1391596,1366378,946295,859626) > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '-0.3' > par1 = 'FALSE' > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc*2, ncol=nrc) + pval <- matrix(NA, nrow=nrc*2, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + qqline(residus) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.04684345 0.1565823 0.2381135 -0.9999992 -0.4883389 -0.3063528 [2,] 0.00000000 0.1635537 0.2499964 -0.9999577 -0.4923044 -0.2840931 [3,] 0.00000000 0.1637421 0.2752268 -0.9932705 -0.7461021 -0.4161219 [4,] 0.00000000 0.0000000 0.2535219 -1.0587024 -0.7476742 -0.4700255 [5,] 0.00000000 0.0000000 0.0000000 -1.1184160 -0.7477417 -0.5116903 [6,] NA NA NA NA NA NA [7,] NA NA NA NA NA NA [8,] NA NA NA NA NA NA [9,] NA NA NA NA NA NA [10,] NA NA NA NA NA NA [11,] NA NA NA NA NA NA [12,] NA NA NA NA NA NA [13,] NA NA NA NA NA NA [14,] NA NA NA NA NA NA [,7] [1,] -0.3291900 [2,] -0.3166501 [3,] 0.0000000 [4,] 0.0000000 [5,] 0.0000000 [6,] NA [7,] NA [8,] NA [9,] NA [10,] NA [11,] NA [12,] NA [13,] NA [14,] NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.74867 0.25063 0.09806 0.0000 0.23913 0.30163 0.50958 [2,] NA 0.21903 0.07033 0.0000 0.27504 0.35560 0.55081 [3,] NA 0.24359 0.04405 0.0096 0.00000 0.00790 NA [4,] NA NA 0.06210 0.0000 0.00000 0.00116 NA [5,] NA NA NA 0.0000 0.00000 0.00024 NA [6,] NA NA NA NA NA NA NA [7,] NA NA NA NA NA NA NA [8,] NA NA NA NA NA NA NA [9,] NA NA NA NA NA NA NA [10,] NA NA NA NA NA NA NA [11,] NA NA NA NA NA NA NA [12,] NA NA NA NA NA NA NA [13,] NA NA NA NA NA NA NA [14,] NA NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.0468 0.1566 0.2381 -1.0000 -0.4883 -0.3064 -0.3292 s.e. 0.1456 0.1351 0.1418 0.1196 0.4110 0.2942 0.4964 sigma^2 estimated as 4.84e-08: log likelihood = 405.95, aic = -795.9 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0.0468 0.1566 0.2381 -1.0000 -0.4883 -0.3064 -0.3292 s.e. 0.1456 0.1351 0.1418 0.1196 0.4110 0.2942 0.4964 sigma^2 estimated as 4.84e-08: log likelihood = 405.95, aic = -795.9 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0.1636 0.2500 -1.0000 -0.4923 -0.2841 -0.3167 s.e. 0 0.1318 0.1359 0.1495 0.4472 0.3053 0.5280 sigma^2 estimated as 4.888e-08: log likelihood = 405.9, aic = -797.8 [[3]][[4]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0.1637 0.2752 -0.9933 -0.7461 -0.4161 0 s.e. 0 0.1392 0.1341 0.3724 0.1194 0.1519 0 sigma^2 estimated as 5.034e-08: log likelihood = 405.72, aic = -799.45 [[3]][[5]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0 0.2535 -1.0587 -0.7477 -0.4700 0 s.e. 0 0 0.1336 0.0999 0.1161 0.1384 0 sigma^2 estimated as 4.617e-08: log likelihood = 405.04, aic = -800.09 [[3]][[6]] NULL [[3]][[7]] NULL $aic [1] -795.9011 -797.7964 -799.4456 -800.0875 -798.5357 Warning messages: 1: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 2: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE > postscript(file="/var/www/rcomp/tmp/1zinm1323194270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 72 Frequency = 1 [1] 1.038711e-05 3.496002e-06 1.326749e-06 -3.241198e-07 -5.247123e-07 [6] -7.509693e-09 -2.431627e-06 -1.751743e-06 1.076813e-06 1.050364e-06 [11] 2.411320e-06 -5.236073e-06 -5.237688e-05 -1.251725e-04 5.714740e-05 [16] 3.083637e-05 2.075679e-05 -4.066690e-06 -2.053351e-04 2.728097e-04 [21] 1.474233e-05 -1.109589e-04 -8.083099e-05 4.540217e-04 6.318068e-05 [26] 2.242387e-04 -2.573666e-04 -2.149657e-04 4.260413e-04 -3.225175e-04 [31] 2.239047e-04 -3.315729e-04 -2.925152e-04 -2.336689e-04 -2.636677e-04 [36] -3.671591e-04 -1.656577e-04 2.339008e-04 3.522659e-04 2.184093e-04 [41] 4.356457e-04 1.525713e-04 1.927623e-04 -1.737646e-04 -1.755155e-04 [46] -2.249039e-05 1.322405e-04 -3.020594e-06 3.414323e-04 -3.347997e-04 [51] -1.056117e-04 4.649906e-04 -1.046913e-04 1.846108e-04 4.467692e-05 [56] -2.094240e-04 -1.058431e-04 -8.395323e-06 6.236145e-05 -8.833271e-06 [61] -1.485838e-04 2.252140e-04 2.835901e-04 1.713097e-04 -1.505141e-05 [66] 7.677156e-05 7.927804e-06 -1.106947e-04 6.922887e-05 2.339884e-05 [71] 1.794246e-04 1.458965e-04 > postscript(file="/var/www/rcomp/tmp/29a8b1323194270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/3zwt71323194270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/41l941323194270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/51lwc1323194270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/6nvxi1323194270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/75y451323194270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > qqline(resid) > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/8ltuk1323194270.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/9ch7l1323194270.tab") > > try(system("convert tmp/1zinm1323194270.ps tmp/1zinm1323194270.png",intern=TRUE)) character(0) > try(system("convert tmp/29a8b1323194270.ps tmp/29a8b1323194270.png",intern=TRUE)) character(0) > try(system("convert tmp/3zwt71323194270.ps tmp/3zwt71323194270.png",intern=TRUE)) character(0) > try(system("convert tmp/41l941323194270.ps tmp/41l941323194270.png",intern=TRUE)) character(0) > try(system("convert tmp/51lwc1323194270.ps tmp/51lwc1323194270.png",intern=TRUE)) character(0) > try(system("convert tmp/6nvxi1323194270.ps tmp/6nvxi1323194270.png",intern=TRUE)) character(0) > try(system("convert tmp/75y451323194270.ps tmp/75y451323194270.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 10.232 1.784 14.512