R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(2.4,2.4,2.5,2.6,2.4,2.6,2.4,2.3,2.4,2.4,2.4,2.4,2.4,2.4,2.4,2.4,2.5,2.1,2.1,2,2,2,1.9,1.9,2,1.8,1.6,1.3,1.4,1.4,1.5,1.7,1.6,1.5,1.6,1.5,1.1,1.1,1.1,1.4,1.3,1.4,1.3,1.1,1,0.9,0.8,0.8,0.8,0.8,1,1.1,1,0.9,1.1,1.2,1.2,1.4,1.5,1.7,1.9,1.9,1.9,1.7,1.7,2.1,2,2,2.5,2.4,2.5,2.5,2,1.9,2.2,2.7,3.1,2.8,2.6,2.3,2.2,2.2,2,2,2.6,2.5,2.5,2.3,2,1.9,2,2.1,2.1,2.3,2.3,2.3,2.1,2.4,2.5,2.1,1.8,1.9,1.9,2.1,2.2,2,2.2,2,1.9,1.6,1.7,2,2.5,2.4,2.3,2.3,2.1,2.4,2.2,2.4,1.9,2.1,2.1,2.1,2,2.1,2.2,2.2,2.6,2.5,2.3,2.2,2.4,2.3,2.2,2.5,2.5,2.5,2.4,2.3,1.7,1.6,1.9,1.9,1.8,1.8,1.9,1.9,1.9,1.9,1.8,1.7,2.1,2.6,3.1,3.1,3.2,3.3,3.6,3.3,3.7,4,4,3.8,3.6,3.2,2.1,1.6,1.1,1.2,0.6,0.6,0,-0.1,-0.6,-0.2,-0.3,-0.1,0.5,0.9) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '0' > par3 = '0' > par2 = '1' > par1 = '11' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sar1 sar2 0.0483 0.9496 1.0000 -0.6372 -0.3478 s.e. 0.0294 0.0295 0.0203 0.0833 0.0818 sigma^2 estimated as 0.03574: log likelihood = 35.11, aic = -58.22 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 170 End = 180 Frequency = 1 [1] 1.0231290 0.8018908 0.9807897 0.7297822 0.5271668 0.5650704 0.7165635 [8] 0.7073295 0.7782396 1.3070946 1.6162226 $se Time Series: Start = 170 End = 180 Frequency = 1 [1] 0.1895530 0.2739096 0.3331029 0.3869572 0.4308745 0.4734236 0.5099210 [8] 0.5460861 0.5779794 0.6098999 0.6385748 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 170 End = 180 Frequency = 1 [1] 0.65160520 0.26502790 0.32790815 -0.02865388 -0.31734713 -0.36283975 [7] -0.28288157 -0.36299937 -0.35459999 0.11169077 0.36461599 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 170 End = 180 Frequency = 1 [1] 1.394653 1.338754 1.633671 1.488218 1.371681 1.492981 1.716009 1.777658 [9] 1.911079 2.502499 2.867829 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 2.4000000 2.4000000 2.5000000 2.6000000 2.4000000 2.6000000 2.4000000 [8] 2.3000000 2.4000000 2.4000000 2.4000000 2.4000000 2.4000000 2.4000000 [15] 2.4000000 2.4000000 2.5000000 2.1000000 2.1000000 2.0000000 2.0000000 [22] 2.0000000 1.9000000 1.9000000 2.0000000 1.8000000 1.6000000 1.3000000 [29] 1.4000000 1.4000000 1.5000000 1.7000000 1.6000000 1.5000000 1.6000000 [36] 1.5000000 1.1000000 1.1000000 1.1000000 1.4000000 1.3000000 1.4000000 [43] 1.3000000 1.1000000 1.0000000 0.9000000 0.8000000 0.8000000 0.8000000 [50] 0.8000000 1.0000000 1.1000000 1.0000000 0.9000000 1.1000000 1.2000000 [57] 1.2000000 1.4000000 1.5000000 1.7000000 1.9000000 1.9000000 1.9000000 [64] 1.7000000 1.7000000 2.1000000 2.0000000 2.0000000 2.5000000 2.4000000 [71] 2.5000000 2.5000000 2.0000000 1.9000000 2.2000000 2.7000000 3.1000000 [78] 2.8000000 2.6000000 2.3000000 2.2000000 2.2000000 2.0000000 2.0000000 [85] 2.6000000 2.5000000 2.5000000 2.3000000 2.0000000 1.9000000 2.0000000 [92] 2.1000000 2.1000000 2.3000000 2.3000000 2.3000000 2.1000000 2.4000000 [99] 2.5000000 2.1000000 1.8000000 1.9000000 1.9000000 2.1000000 2.2000000 [106] 2.0000000 2.2000000 2.0000000 1.9000000 1.6000000 1.7000000 2.0000000 [113] 2.5000000 2.4000000 2.3000000 2.3000000 2.1000000 2.4000000 2.2000000 [120] 2.4000000 1.9000000 2.1000000 2.1000000 2.1000000 2.0000000 2.1000000 [127] 2.2000000 2.2000000 2.6000000 2.5000000 2.3000000 2.2000000 2.4000000 [134] 2.3000000 2.2000000 2.5000000 2.5000000 2.5000000 2.4000000 2.3000000 [141] 1.7000000 1.6000000 1.9000000 1.9000000 1.8000000 1.8000000 1.9000000 [148] 1.9000000 1.9000000 1.9000000 1.8000000 1.7000000 2.1000000 2.6000000 [155] 3.1000000 3.1000000 3.2000000 3.3000000 3.6000000 3.3000000 3.7000000 [162] 4.0000000 4.0000000 3.8000000 3.6000000 3.2000000 2.1000000 1.6000000 [169] 1.1000000 1.0231290 0.8018908 0.9807897 0.7297822 0.5271668 0.5650704 [176] 0.7165635 0.7073295 0.7782396 1.3070946 1.6162226 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 170 End = 180 Frequency = 1 [1] 0.1852679 0.3415797 0.3396272 0.5302365 0.8173399 0.8378134 0.7116200 [8] 0.7720393 0.7426754 0.4666073 0.3951033 > postscript(file="/var/wessaorg/rcomp/tmp/1rnce1323214005.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/wessaorg/rcomp/tmp/239td1323214005.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/36k5a1323214005.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/43z2q1323214005.tab") > > try(system("convert tmp/1rnce1323214005.ps tmp/1rnce1323214005.png",intern=TRUE)) character(0) > try(system("convert tmp/239td1323214005.ps tmp/239td1323214005.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.533 0.286 2.833