R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(2.4,2.4,2.5,2.6,2.4,2.6,2.4,2.3,2.4,2.4,2.4,2.4,2.4,2.4,2.4,2.4,2.5,2.1,2.1,2,2,2,1.9,1.9,2,1.8,1.6,1.3,1.4,1.4,1.5,1.7,1.6,1.5,1.6,1.5,1.1,1.1,1.1,1.4,1.3,1.4,1.3,1.1,1,0.9,0.8,0.8,0.8,0.8,1,1.1,1,0.9,1.1,1.2,1.2,1.4,1.5,1.7,1.9,1.9,1.9,1.7,1.7,2.1,2,2,2.5,2.4,2.5,2.5,2,1.9,2.2,2.7,3.1,2.8,2.6,2.3,2.2,2.2,2,2,2.6,2.5,2.5,2.3,2,1.9,2,2.1,2.1,2.3,2.3,2.3,2.1,2.4,2.5,2.1,1.8,1.9,1.9,2.1,2.2,2,2.2,2,1.9,1.6,1.7,2,2.5,2.4,2.3,2.3,2.1,2.4,2.2,2.4,1.9,2.1,2.1,2.1,2,2.1,2.2,2.2,2.6,2.5,2.3,2.2,2.4,2.3,2.2,2.5,2.5,2.5,2.4,2.3,1.7,1.6,1.9,1.9,1.8,1.8,1.9,1.9,1.9,1.9,1.8,1.7,2.1,2.6,3.1,3.1,3.2,3.3,3.6,3.3,3.7,4,4,3.8,3.6,3.2,2.1,1.6,1.1,1.2,0.6,0.6,0,-0.1,-0.6,-0.2,-0.3,-0.1,0.5,0.9) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '0' > par3 = '0' > par2 = '1' > par1 = '13' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sar1 sar2 0.0436 0.9549 1.0000 -0.6391 -0.3592 s.e. 0.0284 0.0284 0.0198 0.0805 0.0793 sigma^2 estimated as 0.03346: log likelihood = 39.98, aic = -67.96 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 168 End = 180 Frequency = 1 [1] 2.086975 2.064027 1.987901 1.764538 1.944784 1.692738 1.490208 1.529082 [9] 1.682630 1.669148 1.735560 2.260808 2.260022 $se Time Series: Start = 168 End = 180 Frequency = 1 [1] 0.1833839 0.2643743 0.3217630 0.3735859 0.4161754 0.4571857 0.4925883 [8] 0.5274958 0.5584414 0.5892930 0.6171258 0.6450293 0.6483923 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 168 End = 180 Frequency = 1 [1] 1.7275425 1.5458539 1.3572461 1.0323097 1.1290804 0.7966541 0.5247344 [8] 0.4951906 0.5880852 0.5141334 0.5259930 0.9965501 0.9891728 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 168 End = 180 Frequency = 1 [1] 2.446408 2.582201 2.618557 2.496766 2.760488 2.588822 2.455681 2.562974 [9] 2.777176 2.824162 2.945126 3.525065 3.530871 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 2.400000 2.400000 2.500000 2.600000 2.400000 2.600000 2.400000 2.300000 [9] 2.400000 2.400000 2.400000 2.400000 2.400000 2.400000 2.400000 2.400000 [17] 2.500000 2.100000 2.100000 2.000000 2.000000 2.000000 1.900000 1.900000 [25] 2.000000 1.800000 1.600000 1.300000 1.400000 1.400000 1.500000 1.700000 [33] 1.600000 1.500000 1.600000 1.500000 1.100000 1.100000 1.100000 1.400000 [41] 1.300000 1.400000 1.300000 1.100000 1.000000 0.900000 0.800000 0.800000 [49] 0.800000 0.800000 1.000000 1.100000 1.000000 0.900000 1.100000 1.200000 [57] 1.200000 1.400000 1.500000 1.700000 1.900000 1.900000 1.900000 1.700000 [65] 1.700000 2.100000 2.000000 2.000000 2.500000 2.400000 2.500000 2.500000 [73] 2.000000 1.900000 2.200000 2.700000 3.100000 2.800000 2.600000 2.300000 [81] 2.200000 2.200000 2.000000 2.000000 2.600000 2.500000 2.500000 2.300000 [89] 2.000000 1.900000 2.000000 2.100000 2.100000 2.300000 2.300000 2.300000 [97] 2.100000 2.400000 2.500000 2.100000 1.800000 1.900000 1.900000 2.100000 [105] 2.200000 2.000000 2.200000 2.000000 1.900000 1.600000 1.700000 2.000000 [113] 2.500000 2.400000 2.300000 2.300000 2.100000 2.400000 2.200000 2.400000 [121] 1.900000 2.100000 2.100000 2.100000 2.000000 2.100000 2.200000 2.200000 [129] 2.600000 2.500000 2.300000 2.200000 2.400000 2.300000 2.200000 2.500000 [137] 2.500000 2.500000 2.400000 2.300000 1.700000 1.600000 1.900000 1.900000 [145] 1.800000 1.800000 1.900000 1.900000 1.900000 1.900000 1.800000 1.700000 [153] 2.100000 2.600000 3.100000 3.100000 3.200000 3.300000 3.600000 3.300000 [161] 3.700000 4.000000 4.000000 3.800000 3.600000 3.200000 2.100000 2.086975 [169] 2.064027 1.987901 1.764538 1.944784 1.692738 1.490208 1.529082 1.682630 [177] 1.669148 1.735560 2.260808 2.260022 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 168 End = 180 Frequency = 1 [1] 0.0878707 0.1280866 0.1618606 0.2117188 0.2139957 0.2700865 0.3305501 [8] 0.3449754 0.3318860 0.3530502 0.3555774 0.2853093 0.2868965 > postscript(file="/var/wessaorg/rcomp/tmp/1y8p31323214236.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/wessaorg/rcomp/tmp/2fhqa1323214236.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/35g541323214236.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4bawb1323214236.tab") > > try(system("convert tmp/1y8p31323214236.ps tmp/1y8p31323214236.png",intern=TRUE)) character(0) > try(system("convert tmp/2fhqa1323214236.ps tmp/2fhqa1323214236.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.643 0.308 2.944