R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(2.4,2.4,2.5,2.6,2.4,2.6,2.4,2.3,2.4,2.4,2.4,2.4,2.4,2.4,2.4,2.4,2.5,2.1,2.1,2,2,2,1.9,1.9,2,1.8,1.6,1.3,1.4,1.4,1.5,1.7,1.6,1.5,1.6,1.5,1.1,1.1,1.1,1.4,1.3,1.4,1.3,1.1,1,0.9,0.8,0.8,0.8,0.8,1,1.1,1,0.9,1.1,1.2,1.2,1.4,1.5,1.7,1.9,1.9,1.9,1.7,1.7,2.1,2,2,2.5,2.4,2.5,2.5,2,1.9,2.2,2.7,3.1,2.8,2.6,2.3,2.2,2.2,2,2,2.6,2.5,2.5,2.3,2,1.9,2,2.1,2.1,2.3,2.3,2.3,2.1,2.4,2.5,2.1,1.8,1.9,1.9,2.1,2.2,2,2.2,2,1.9,1.6,1.7,2,2.5,2.4,2.3,2.3,2.1,2.4,2.2,2.4,1.9,2.1,2.1,2.1,2,2.1,2.2,2.2,2.6,2.5,2.3,2.2,2.4,2.3,2.2,2.5,2.5,2.5,2.4,2.3,1.7,1.6,1.9,1.9,1.8,1.8,1.9,1.9,1.9,1.9,1.8,1.7,2.1,2.6,3.1,3.1,3.2,3.3,3.6,3.3,3.7,4,4,3.8,3.6,3.2,2.1,1.6,1.1,1.2,0.6,0.6,0,-0.1,-0.6,-0.2,-0.3,-0.1,0.5,0.9) > par10 = 'FALSE' > par9 = '0' > par8 = '2' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sar1 sar2 0.6897 -0.1971 -0.5513 -0.5661 -0.2796 s.e. 0.2083 0.0852 0.1994 0.0815 0.0829 sigma^2 estimated as 0.02939: log likelihood = 51.09, aic = -90.19 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 157 End = 180 Frequency = 1 [1] 2.992939 2.952078 2.897193 2.808799 2.810845 2.813148 2.898903 2.983836 [9] 2.925135 2.669963 2.302983 2.302964 2.391527 2.414660 2.417778 2.467822 [17] 2.466664 2.465360 2.444767 2.424639 2.346049 2.350731 2.418712 2.418723 $se Time Series: Start = 157 End = 180 Frequency = 1 [1] 0.1714353 0.2597723 0.3147680 0.3535840 0.3852625 0.4136901 0.4402919 [8] 0.4655255 0.4895573 0.5125008 0.5344673 0.5555639 0.5582383 0.5597519 [15] 0.5620698 0.5653101 0.5690363 0.5728865 0.5767099 0.5804782 0.5842022 [22] 0.5878945 0.5915622 0.5952078 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 157 End = 180 Frequency = 1 [1] 2.656926 2.442924 2.280248 2.115774 2.055730 2.002316 2.035931 2.071406 [9] 1.965602 1.665461 1.255427 1.214059 1.297380 1.317547 1.316121 1.359814 [17] 1.351353 1.342502 1.314416 1.286902 1.201012 1.198458 1.259250 1.252115 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 157 End = 180 Frequency = 1 [1] 3.328952 3.461232 3.514139 3.501823 3.565959 3.623981 3.761875 3.896266 [9] 3.884667 3.674464 3.350539 3.391869 3.485674 3.511774 3.519434 3.575830 [17] 3.581975 3.588217 3.575118 3.562376 3.491085 3.503004 3.578174 3.585330 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 2.400000 2.400000 2.500000 2.600000 2.400000 2.600000 2.400000 2.300000 [9] 2.400000 2.400000 2.400000 2.400000 2.400000 2.400000 2.400000 2.400000 [17] 2.500000 2.100000 2.100000 2.000000 2.000000 2.000000 1.900000 1.900000 [25] 2.000000 1.800000 1.600000 1.300000 1.400000 1.400000 1.500000 1.700000 [33] 1.600000 1.500000 1.600000 1.500000 1.100000 1.100000 1.100000 1.400000 [41] 1.300000 1.400000 1.300000 1.100000 1.000000 0.900000 0.800000 0.800000 [49] 0.800000 0.800000 1.000000 1.100000 1.000000 0.900000 1.100000 1.200000 [57] 1.200000 1.400000 1.500000 1.700000 1.900000 1.900000 1.900000 1.700000 [65] 1.700000 2.100000 2.000000 2.000000 2.500000 2.400000 2.500000 2.500000 [73] 2.000000 1.900000 2.200000 2.700000 3.100000 2.800000 2.600000 2.300000 [81] 2.200000 2.200000 2.000000 2.000000 2.600000 2.500000 2.500000 2.300000 [89] 2.000000 1.900000 2.000000 2.100000 2.100000 2.300000 2.300000 2.300000 [97] 2.100000 2.400000 2.500000 2.100000 1.800000 1.900000 1.900000 2.100000 [105] 2.200000 2.000000 2.200000 2.000000 1.900000 1.600000 1.700000 2.000000 [113] 2.500000 2.400000 2.300000 2.300000 2.100000 2.400000 2.200000 2.400000 [121] 1.900000 2.100000 2.100000 2.100000 2.000000 2.100000 2.200000 2.200000 [129] 2.600000 2.500000 2.300000 2.200000 2.400000 2.300000 2.200000 2.500000 [137] 2.500000 2.500000 2.400000 2.300000 1.700000 1.600000 1.900000 1.900000 [145] 1.800000 1.800000 1.900000 1.900000 1.900000 1.900000 1.800000 1.700000 [153] 2.100000 2.600000 3.100000 3.100000 2.992939 2.952078 2.897193 2.808799 [161] 2.810845 2.813148 2.898903 2.983836 2.925135 2.669963 2.302983 2.302964 [169] 2.391527 2.414660 2.417778 2.467822 2.466664 2.465360 2.444767 2.424639 [177] 2.346049 2.350731 2.418712 2.418723 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 157 End = 180 Frequency = 1 [1] 0.05727991 0.08799642 0.10864584 0.12588441 0.13706290 0.14705591 [7] 0.15188226 0.15601576 0.16736232 0.19195051 0.23207609 0.24123864 [13] 0.23342342 0.23181393 0.23247370 0.22907246 0.23069065 0.23237439 [19] 0.23589565 0.23940810 0.24901536 0.25009007 0.24457736 0.24608351 > postscript(file="/var/wessaorg/rcomp/tmp/1zvyl1323214957.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/wessaorg/rcomp/tmp/2bq5k1323214957.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3yh6y1323214957.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4ai3h1323214957.tab") > > try(system("convert tmp/1zvyl1323214957.ps tmp/1zvyl1323214957.png",intern=TRUE)) character(0) > try(system("convert tmp/2bq5k1323214957.ps tmp/2bq5k1323214957.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.830 0.309 2.132