R version 2.12.1 (2010-12-16) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(235.1,46,280.7,62,264.6,66,240.7,59,201.4,58,240.8,61,241.1,41,223.8,27,206.1,58,174.7,70,203.3,49,220.5,59,299.5,44,347.4,36,338.3,72,327.7,45,351.6,56,396.6,54,438.8,53,395.6,35,363.5,61,378.8,52,357,47,369,51,464.8,52,479.1,63,431.3,74,366.5,45,326.3,51,355.1,64,331.6,36,261.3,30,249,55,205.5,64,235.6,39,240.9,40,264.9,63,253.8,45,232.3,59,193.8,55,177,40,213.2,64,207.2,27,180.6,28,188.6,45,175.4,57,199,45,179.6,69,225.8,60,234,56,200.2,58,183.6,50,178.2,51,203.2,53,208.5,37,191.8,22,172.8,55,148,70,159.4,62,154.5,58,213.2,39,196.4,49,182.8,58,176.4,47,153.6,42,173.2,62,171,39,151.2,40,161.9,72,157.2,70,201.7,54,236.4,65),dim=c(2,72),dimnames=list(c('werkloosheid','faillissementen'),1:72)) > y <- array(NA,dim=c(2,72),dimnames=list(c('werkloosheid','faillissementen'),1:72)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x werkloosheid faillissementen 1 235.1 46 2 280.7 62 3 264.6 66 4 240.7 59 5 201.4 58 6 240.8 61 7 241.1 41 8 223.8 27 9 206.1 58 10 174.7 70 11 203.3 49 12 220.5 59 13 299.5 44 14 347.4 36 15 338.3 72 16 327.7 45 17 351.6 56 18 396.6 54 19 438.8 53 20 395.6 35 21 363.5 61 22 378.8 52 23 357.0 47 24 369.0 51 25 464.8 52 26 479.1 63 27 431.3 74 28 366.5 45 29 326.3 51 30 355.1 64 31 331.6 36 32 261.3 30 33 249.0 55 34 205.5 64 35 235.6 39 36 240.9 40 37 264.9 63 38 253.8 45 39 232.3 59 40 193.8 55 41 177.0 40 42 213.2 64 43 207.2 27 44 180.6 28 45 188.6 45 46 175.4 57 47 199.0 45 48 179.6 69 49 225.8 60 50 234.0 56 51 200.2 58 52 183.6 50 53 178.2 51 54 203.2 53 55 208.5 37 56 191.8 22 57 172.8 55 58 148.0 70 59 159.4 62 60 154.5 58 61 213.2 39 62 196.4 49 63 182.8 58 64 176.4 47 65 153.6 42 66 173.2 62 67 171.0 39 68 151.2 40 69 161.9 72 70 157.2 70 71 201.7 54 72 236.4 65 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) faillissementen 237.5707 0.2242 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -105.27 -63.73 -27.76 58.37 227.40 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 237.5707 44.6277 5.323 1.17e-06 *** faillissementen 0.2242 0.8369 0.268 0.79 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 85.13 on 70 degrees of freedom Multiple R-squared: 0.001025, Adjusted R-squared: -0.01325 F-statistic: 0.07179 on 1 and 70 DF, p-value: 0.7895 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.0551275821 1.102552e-01 9.448724e-01 [2,] 0.0161341527 3.226831e-02 9.838658e-01 [3,] 0.0052415345 1.048307e-02 9.947585e-01 [4,] 0.0013110614 2.622123e-03 9.986889e-01 [5,] 0.0009275708 1.855142e-03 9.990724e-01 [6,] 0.0023627169 4.725434e-03 9.976373e-01 [7,] 0.0010713650 2.142730e-03 9.989286e-01 [8,] 0.0003545529 7.091057e-04 9.996454e-01 [9,] 0.0007157268 1.431454e-03 9.992843e-01 [10,] 0.0033289356 6.657871e-03 9.966711e-01 [11,] 0.0121591851 2.431837e-02 9.878408e-01 [12,] 0.0132744364 2.654887e-02 9.867256e-01 [13,] 0.0223900932 4.478019e-02 9.776099e-01 [14,] 0.0685303981 1.370608e-01 9.314696e-01 [15,] 0.2413413076 4.826826e-01 7.586587e-01 [16,] 0.3128284211 6.256568e-01 6.871716e-01 [17,] 0.3440636974 6.881274e-01 6.559363e-01 [18,] 0.3978304048 7.956608e-01 6.021696e-01 [19,] 0.4057400501 8.114801e-01 5.942599e-01 [20,] 0.4447817627 8.895635e-01 5.552182e-01 [21,] 0.7902132031 4.195736e-01 2.097868e-01 [22,] 0.9825915840 3.481683e-02 1.740842e-02 [23,] 0.9991595602 1.680880e-03 8.404398e-04 [24,] 0.9998653960 2.692081e-04 1.346040e-04 [25,] 0.9999579967 8.400668e-05 4.200334e-05 [26,] 0.9999992169 1.566102e-06 7.830510e-07 [27,] 0.9999999790 4.193717e-08 2.096858e-08 [28,] 0.9999999862 2.759621e-08 1.379810e-08 [29,] 0.9999999913 1.739032e-08 8.695158e-09 [30,] 0.9999999891 2.173450e-08 1.086725e-08 [31,] 0.9999999880 2.402824e-08 1.201412e-08 [32,] 0.9999999895 2.102701e-08 1.051350e-08 [33,] 0.9999999985 3.022181e-09 1.511091e-09 [34,] 0.9999999997 6.754433e-10 3.377217e-10 [35,] 0.9999999998 3.620963e-10 1.810481e-10 [36,] 0.9999999997 6.670089e-10 3.335045e-10 [37,] 0.9999999994 1.114668e-09 5.573339e-10 [38,] 0.9999999993 1.399642e-09 6.998211e-10 [39,] 0.9999999983 3.361708e-09 1.680854e-09 [40,] 0.9999999961 7.805525e-09 3.902763e-09 [41,] 0.9999999902 1.950039e-08 9.750196e-09 [42,] 0.9999999802 3.968195e-08 1.984097e-08 [43,] 0.9999999496 1.007166e-07 5.035828e-08 [44,] 0.9999998897 2.206770e-07 1.103385e-07 [45,] 0.9999999031 1.937998e-07 9.689991e-08 [46,] 0.9999999608 7.844997e-08 3.922498e-08 [47,] 0.9999999182 1.636304e-07 8.181518e-08 [48,] 0.9999997534 4.932016e-07 2.466008e-07 [49,] 0.9999992720 1.455952e-06 7.279760e-07 [50,] 0.9999984845 3.030964e-06 1.515482e-06 [51,] 0.9999967196 6.560876e-06 3.280438e-06 [52,] 0.9999893702 2.125967e-05 1.062983e-05 [53,] 0.9999694587 6.108260e-05 3.054130e-05 [54,] 0.9999484346 1.031308e-04 5.156540e-05 [55,] 0.9998814767 2.370466e-04 1.185233e-04 [56,] 0.9997706805 4.586390e-04 2.293195e-04 [57,] 0.9996876891 6.246218e-04 3.123109e-04 [58,] 0.9992309752 1.538050e-03 7.690248e-04 [59,] 0.9975474929 4.905014e-03 2.452507e-03 [60,] 0.9925788565 1.484229e-02 7.421143e-03 [61,] 0.9811237586 3.775248e-02 1.887624e-02 [62,] 0.9492159812 1.015680e-01 5.078402e-02 [63,] 0.8701300577 2.597399e-01 1.298699e-01 > postscript(file="/var/www/rcomp/tmp/12b4l1323436561.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/273t71323436561.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/3at211323436561.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/4nkr01323436561.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/5ikzo1323436561.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 72 Frequency = 1 1 2 3 4 5 6 -12.786078 29.225953 12.228961 -10.101302 -49.177054 -10.449798 7 8 9 10 11 12 -5.664837 -19.825364 -44.477054 -78.568031 -45.258822 -30.301302 13 14 15 16 17 18 52.062419 101.756403 84.583473 80.038171 101.471442 146.919938 19 20 21 22 23 24 189.344186 150.180651 112.250202 129.568434 108.889674 119.992682 25 26 27 28 29 30 215.568434 227.401705 177.134977 118.838171 77.292682 103.177457 31 32 33 34 35 36 85.956403 17.001891 -0.904310 -46.422543 -10.716341 -5.640589 37 38 39 40 41 42 13.201705 6.138171 -18.501302 -56.104310 -69.540589 -38.722543 43 44 45 46 47 48 -36.425364 -63.249612 -59.061829 -74.952806 -48.661829 -73.443783 49 50 51 52 53 54 -25.225550 -16.128558 -50.377054 -65.183070 -70.807318 -46.255814 55 56 57 58 59 60 -37.367845 -50.704124 -77.104310 -105.268031 -92.074047 -96.077054 61 62 63 64 65 66 -33.116341 -52.158822 -67.777054 -71.710326 -93.389085 -78.274047 67 68 69 70 71 72 -75.316341 -95.340589 -91.816527 -96.068031 -47.980062 -15.746791 > postscript(file="/var/www/rcomp/tmp/6qch61323436561.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 72 Frequency = 1 lag(myerror, k = 1) myerror 0 -12.786078 NA 1 29.225953 -12.786078 2 12.228961 29.225953 3 -10.101302 12.228961 4 -49.177054 -10.101302 5 -10.449798 -49.177054 6 -5.664837 -10.449798 7 -19.825364 -5.664837 8 -44.477054 -19.825364 9 -78.568031 -44.477054 10 -45.258822 -78.568031 11 -30.301302 -45.258822 12 52.062419 -30.301302 13 101.756403 52.062419 14 84.583473 101.756403 15 80.038171 84.583473 16 101.471442 80.038171 17 146.919938 101.471442 18 189.344186 146.919938 19 150.180651 189.344186 20 112.250202 150.180651 21 129.568434 112.250202 22 108.889674 129.568434 23 119.992682 108.889674 24 215.568434 119.992682 25 227.401705 215.568434 26 177.134977 227.401705 27 118.838171 177.134977 28 77.292682 118.838171 29 103.177457 77.292682 30 85.956403 103.177457 31 17.001891 85.956403 32 -0.904310 17.001891 33 -46.422543 -0.904310 34 -10.716341 -46.422543 35 -5.640589 -10.716341 36 13.201705 -5.640589 37 6.138171 13.201705 38 -18.501302 6.138171 39 -56.104310 -18.501302 40 -69.540589 -56.104310 41 -38.722543 -69.540589 42 -36.425364 -38.722543 43 -63.249612 -36.425364 44 -59.061829 -63.249612 45 -74.952806 -59.061829 46 -48.661829 -74.952806 47 -73.443783 -48.661829 48 -25.225550 -73.443783 49 -16.128558 -25.225550 50 -50.377054 -16.128558 51 -65.183070 -50.377054 52 -70.807318 -65.183070 53 -46.255814 -70.807318 54 -37.367845 -46.255814 55 -50.704124 -37.367845 56 -77.104310 -50.704124 57 -105.268031 -77.104310 58 -92.074047 -105.268031 59 -96.077054 -92.074047 60 -33.116341 -96.077054 61 -52.158822 -33.116341 62 -67.777054 -52.158822 63 -71.710326 -67.777054 64 -93.389085 -71.710326 65 -78.274047 -93.389085 66 -75.316341 -78.274047 67 -95.340589 -75.316341 68 -91.816527 -95.340589 69 -96.068031 -91.816527 70 -47.980062 -96.068031 71 -15.746791 -47.980062 72 NA -15.746791 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 29.225953 -12.786078 [2,] 12.228961 29.225953 [3,] -10.101302 12.228961 [4,] -49.177054 -10.101302 [5,] -10.449798 -49.177054 [6,] -5.664837 -10.449798 [7,] -19.825364 -5.664837 [8,] -44.477054 -19.825364 [9,] -78.568031 -44.477054 [10,] -45.258822 -78.568031 [11,] -30.301302 -45.258822 [12,] 52.062419 -30.301302 [13,] 101.756403 52.062419 [14,] 84.583473 101.756403 [15,] 80.038171 84.583473 [16,] 101.471442 80.038171 [17,] 146.919938 101.471442 [18,] 189.344186 146.919938 [19,] 150.180651 189.344186 [20,] 112.250202 150.180651 [21,] 129.568434 112.250202 [22,] 108.889674 129.568434 [23,] 119.992682 108.889674 [24,] 215.568434 119.992682 [25,] 227.401705 215.568434 [26,] 177.134977 227.401705 [27,] 118.838171 177.134977 [28,] 77.292682 118.838171 [29,] 103.177457 77.292682 [30,] 85.956403 103.177457 [31,] 17.001891 85.956403 [32,] -0.904310 17.001891 [33,] -46.422543 -0.904310 [34,] -10.716341 -46.422543 [35,] -5.640589 -10.716341 [36,] 13.201705 -5.640589 [37,] 6.138171 13.201705 [38,] -18.501302 6.138171 [39,] -56.104310 -18.501302 [40,] -69.540589 -56.104310 [41,] -38.722543 -69.540589 [42,] -36.425364 -38.722543 [43,] -63.249612 -36.425364 [44,] -59.061829 -63.249612 [45,] -74.952806 -59.061829 [46,] -48.661829 -74.952806 [47,] -73.443783 -48.661829 [48,] -25.225550 -73.443783 [49,] -16.128558 -25.225550 [50,] -50.377054 -16.128558 [51,] -65.183070 -50.377054 [52,] -70.807318 -65.183070 [53,] -46.255814 -70.807318 [54,] -37.367845 -46.255814 [55,] -50.704124 -37.367845 [56,] -77.104310 -50.704124 [57,] -105.268031 -77.104310 [58,] -92.074047 -105.268031 [59,] -96.077054 -92.074047 [60,] -33.116341 -96.077054 [61,] -52.158822 -33.116341 [62,] -67.777054 -52.158822 [63,] -71.710326 -67.777054 [64,] -93.389085 -71.710326 [65,] -78.274047 -93.389085 [66,] -75.316341 -78.274047 [67,] -95.340589 -75.316341 [68,] -91.816527 -95.340589 [69,] -96.068031 -91.816527 [70,] -47.980062 -96.068031 [71,] -15.746791 -47.980062 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 29.225953 -12.786078 2 12.228961 29.225953 3 -10.101302 12.228961 4 -49.177054 -10.101302 5 -10.449798 -49.177054 6 -5.664837 -10.449798 7 -19.825364 -5.664837 8 -44.477054 -19.825364 9 -78.568031 -44.477054 10 -45.258822 -78.568031 11 -30.301302 -45.258822 12 52.062419 -30.301302 13 101.756403 52.062419 14 84.583473 101.756403 15 80.038171 84.583473 16 101.471442 80.038171 17 146.919938 101.471442 18 189.344186 146.919938 19 150.180651 189.344186 20 112.250202 150.180651 21 129.568434 112.250202 22 108.889674 129.568434 23 119.992682 108.889674 24 215.568434 119.992682 25 227.401705 215.568434 26 177.134977 227.401705 27 118.838171 177.134977 28 77.292682 118.838171 29 103.177457 77.292682 30 85.956403 103.177457 31 17.001891 85.956403 32 -0.904310 17.001891 33 -46.422543 -0.904310 34 -10.716341 -46.422543 35 -5.640589 -10.716341 36 13.201705 -5.640589 37 6.138171 13.201705 38 -18.501302 6.138171 39 -56.104310 -18.501302 40 -69.540589 -56.104310 41 -38.722543 -69.540589 42 -36.425364 -38.722543 43 -63.249612 -36.425364 44 -59.061829 -63.249612 45 -74.952806 -59.061829 46 -48.661829 -74.952806 47 -73.443783 -48.661829 48 -25.225550 -73.443783 49 -16.128558 -25.225550 50 -50.377054 -16.128558 51 -65.183070 -50.377054 52 -70.807318 -65.183070 53 -46.255814 -70.807318 54 -37.367845 -46.255814 55 -50.704124 -37.367845 56 -77.104310 -50.704124 57 -105.268031 -77.104310 58 -92.074047 -105.268031 59 -96.077054 -92.074047 60 -33.116341 -96.077054 61 -52.158822 -33.116341 62 -67.777054 -52.158822 63 -71.710326 -67.777054 64 -93.389085 -71.710326 65 -78.274047 -93.389085 66 -75.316341 -78.274047 67 -95.340589 -75.316341 68 -91.816527 -95.340589 69 -96.068031 -91.816527 70 -47.980062 -96.068031 71 -15.746791 -47.980062 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/7ujvv1323436562.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/85ln71323436562.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/9wrs41323436562.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/rcomp/tmp/10vmc51323436562.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/11fe731323436562.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/12zy3i1323436562.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/13j3791323436562.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/14foga1323436562.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/158b6d1323436562.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/16xtlu1323436562.tab") + } > > try(system("convert tmp/12b4l1323436561.ps tmp/12b4l1323436561.png",intern=TRUE)) character(0) > try(system("convert tmp/273t71323436561.ps tmp/273t71323436561.png",intern=TRUE)) character(0) > try(system("convert tmp/3at211323436561.ps tmp/3at211323436561.png",intern=TRUE)) character(0) > try(system("convert tmp/4nkr01323436561.ps tmp/4nkr01323436561.png",intern=TRUE)) character(0) > try(system("convert tmp/5ikzo1323436561.ps tmp/5ikzo1323436561.png",intern=TRUE)) character(0) > try(system("convert tmp/6qch61323436561.ps tmp/6qch61323436561.png",intern=TRUE)) character(0) > try(system("convert tmp/7ujvv1323436562.ps tmp/7ujvv1323436562.png",intern=TRUE)) character(0) > try(system("convert tmp/85ln71323436562.ps tmp/85ln71323436562.png",intern=TRUE)) character(0) > try(system("convert tmp/9wrs41323436562.ps tmp/9wrs41323436562.png",intern=TRUE)) character(0) > try(system("convert tmp/10vmc51323436562.ps tmp/10vmc51323436562.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.920 0.664 4.837