R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(617,614,647,580,614,636,388,356,639,753,611,639,630,586,695,552,619,681,421,307,754,690,644,643,608,651,691,627,634,731,475,337,803,722,590,724,627,696,825,677,656,785,412,352,839,729,696,641,695,638,762,635,721,854,418,367,824,687,601,676,740,691,683,594,729,731,386,331,706,715,657,653,642,643,718,654,632,731,392,344,792,852,649,629,685,617,715,715,629,916,531,357,917,828,708,858,775,785,1006,789,734,906,532,387,991,841,892,782,811,792,978,773,796,946,594,438,1023,868,791,760,779,852,1001,734,996,869,599,426,1138),dim=c(1,129),dimnames=list(c('faillissementen'),1:129)) > y <- array(NA,dim=c(1,129),dimnames=list(c('faillissementen'),1:129)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > library(lattice) > library(lmtest) Loading required package: zoo > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x faillissementen M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 617 1 0 0 0 0 0 0 0 0 0 0 1 2 614 0 1 0 0 0 0 0 0 0 0 0 2 3 647 0 0 1 0 0 0 0 0 0 0 0 3 4 580 0 0 0 1 0 0 0 0 0 0 0 4 5 614 0 0 0 0 1 0 0 0 0 0 0 5 6 636 0 0 0 0 0 1 0 0 0 0 0 6 7 388 0 0 0 0 0 0 1 0 0 0 0 7 8 356 0 0 0 0 0 0 0 1 0 0 0 8 9 639 0 0 0 0 0 0 0 0 1 0 0 9 10 753 0 0 0 0 0 0 0 0 0 1 0 10 11 611 0 0 0 0 0 0 0 0 0 0 1 11 12 639 0 0 0 0 0 0 0 0 0 0 0 12 13 630 1 0 0 0 0 0 0 0 0 0 0 13 14 586 0 1 0 0 0 0 0 0 0 0 0 14 15 695 0 0 1 0 0 0 0 0 0 0 0 15 16 552 0 0 0 1 0 0 0 0 0 0 0 16 17 619 0 0 0 0 1 0 0 0 0 0 0 17 18 681 0 0 0 0 0 1 0 0 0 0 0 18 19 421 0 0 0 0 0 0 1 0 0 0 0 19 20 307 0 0 0 0 0 0 0 1 0 0 0 20 21 754 0 0 0 0 0 0 0 0 1 0 0 21 22 690 0 0 0 0 0 0 0 0 0 1 0 22 23 644 0 0 0 0 0 0 0 0 0 0 1 23 24 643 0 0 0 0 0 0 0 0 0 0 0 24 25 608 1 0 0 0 0 0 0 0 0 0 0 25 26 651 0 1 0 0 0 0 0 0 0 0 0 26 27 691 0 0 1 0 0 0 0 0 0 0 0 27 28 627 0 0 0 1 0 0 0 0 0 0 0 28 29 634 0 0 0 0 1 0 0 0 0 0 0 29 30 731 0 0 0 0 0 1 0 0 0 0 0 30 31 475 0 0 0 0 0 0 1 0 0 0 0 31 32 337 0 0 0 0 0 0 0 1 0 0 0 32 33 803 0 0 0 0 0 0 0 0 1 0 0 33 34 722 0 0 0 0 0 0 0 0 0 1 0 34 35 590 0 0 0 0 0 0 0 0 0 0 1 35 36 724 0 0 0 0 0 0 0 0 0 0 0 36 37 627 1 0 0 0 0 0 0 0 0 0 0 37 38 696 0 1 0 0 0 0 0 0 0 0 0 38 39 825 0 0 1 0 0 0 0 0 0 0 0 39 40 677 0 0 0 1 0 0 0 0 0 0 0 40 41 656 0 0 0 0 1 0 0 0 0 0 0 41 42 785 0 0 0 0 0 1 0 0 0 0 0 42 43 412 0 0 0 0 0 0 1 0 0 0 0 43 44 352 0 0 0 0 0 0 0 1 0 0 0 44 45 839 0 0 0 0 0 0 0 0 1 0 0 45 46 729 0 0 0 0 0 0 0 0 0 1 0 46 47 696 0 0 0 0 0 0 0 0 0 0 1 47 48 641 0 0 0 0 0 0 0 0 0 0 0 48 49 695 1 0 0 0 0 0 0 0 0 0 0 49 50 638 0 1 0 0 0 0 0 0 0 0 0 50 51 762 0 0 1 0 0 0 0 0 0 0 0 51 52 635 0 0 0 1 0 0 0 0 0 0 0 52 53 721 0 0 0 0 1 0 0 0 0 0 0 53 54 854 0 0 0 0 0 1 0 0 0 0 0 54 55 418 0 0 0 0 0 0 1 0 0 0 0 55 56 367 0 0 0 0 0 0 0 1 0 0 0 56 57 824 0 0 0 0 0 0 0 0 1 0 0 57 58 687 0 0 0 0 0 0 0 0 0 1 0 58 59 601 0 0 0 0 0 0 0 0 0 0 1 59 60 676 0 0 0 0 0 0 0 0 0 0 0 60 61 740 1 0 0 0 0 0 0 0 0 0 0 61 62 691 0 1 0 0 0 0 0 0 0 0 0 62 63 683 0 0 1 0 0 0 0 0 0 0 0 63 64 594 0 0 0 1 0 0 0 0 0 0 0 64 65 729 0 0 0 0 1 0 0 0 0 0 0 65 66 731 0 0 0 0 0 1 0 0 0 0 0 66 67 386 0 0 0 0 0 0 1 0 0 0 0 67 68 331 0 0 0 0 0 0 0 1 0 0 0 68 69 706 0 0 0 0 0 0 0 0 1 0 0 69 70 715 0 0 0 0 0 0 0 0 0 1 0 70 71 657 0 0 0 0 0 0 0 0 0 0 1 71 72 653 0 0 0 0 0 0 0 0 0 0 0 72 73 642 1 0 0 0 0 0 0 0 0 0 0 73 74 643 0 1 0 0 0 0 0 0 0 0 0 74 75 718 0 0 1 0 0 0 0 0 0 0 0 75 76 654 0 0 0 1 0 0 0 0 0 0 0 76 77 632 0 0 0 0 1 0 0 0 0 0 0 77 78 731 0 0 0 0 0 1 0 0 0 0 0 78 79 392 0 0 0 0 0 0 1 0 0 0 0 79 80 344 0 0 0 0 0 0 0 1 0 0 0 80 81 792 0 0 0 0 0 0 0 0 1 0 0 81 82 852 0 0 0 0 0 0 0 0 0 1 0 82 83 649 0 0 0 0 0 0 0 0 0 0 1 83 84 629 0 0 0 0 0 0 0 0 0 0 0 84 85 685 1 0 0 0 0 0 0 0 0 0 0 85 86 617 0 1 0 0 0 0 0 0 0 0 0 86 87 715 0 0 1 0 0 0 0 0 0 0 0 87 88 715 0 0 0 1 0 0 0 0 0 0 0 88 89 629 0 0 0 0 1 0 0 0 0 0 0 89 90 916 0 0 0 0 0 1 0 0 0 0 0 90 91 531 0 0 0 0 0 0 1 0 0 0 0 91 92 357 0 0 0 0 0 0 0 1 0 0 0 92 93 917 0 0 0 0 0 0 0 0 1 0 0 93 94 828 0 0 0 0 0 0 0 0 0 1 0 94 95 708 0 0 0 0 0 0 0 0 0 0 1 95 96 858 0 0 0 0 0 0 0 0 0 0 0 96 97 775 1 0 0 0 0 0 0 0 0 0 0 97 98 785 0 1 0 0 0 0 0 0 0 0 0 98 99 1006 0 0 1 0 0 0 0 0 0 0 0 99 100 789 0 0 0 1 0 0 0 0 0 0 0 100 101 734 0 0 0 0 1 0 0 0 0 0 0 101 102 906 0 0 0 0 0 1 0 0 0 0 0 102 103 532 0 0 0 0 0 0 1 0 0 0 0 103 104 387 0 0 0 0 0 0 0 1 0 0 0 104 105 991 0 0 0 0 0 0 0 0 1 0 0 105 106 841 0 0 0 0 0 0 0 0 0 1 0 106 107 892 0 0 0 0 0 0 0 0 0 0 1 107 108 782 0 0 0 0 0 0 0 0 0 0 0 108 109 811 1 0 0 0 0 0 0 0 0 0 0 109 110 792 0 1 0 0 0 0 0 0 0 0 0 110 111 978 0 0 1 0 0 0 0 0 0 0 0 111 112 773 0 0 0 1 0 0 0 0 0 0 0 112 113 796 0 0 0 0 1 0 0 0 0 0 0 113 114 946 0 0 0 0 0 1 0 0 0 0 0 114 115 594 0 0 0 0 0 0 1 0 0 0 0 115 116 438 0 0 0 0 0 0 0 1 0 0 0 116 117 1023 0 0 0 0 0 0 0 0 1 0 0 117 118 868 0 0 0 0 0 0 0 0 0 1 0 118 119 791 0 0 0 0 0 0 0 0 0 0 1 119 120 760 0 0 0 0 0 0 0 0 0 0 0 120 121 779 1 0 0 0 0 0 0 0 0 0 0 121 122 852 0 1 0 0 0 0 0 0 0 0 0 122 123 1001 0 0 1 0 0 0 0 0 0 0 0 123 124 734 0 0 0 1 0 0 0 0 0 0 0 124 125 996 0 0 0 0 1 0 0 0 0 0 0 125 126 869 0 0 0 0 0 1 0 0 0 0 0 126 127 599 0 0 0 0 0 0 1 0 0 0 0 127 128 426 0 0 0 0 0 0 0 1 0 0 0 128 129 1138 0 0 0 0 0 0 0 0 1 0 0 129 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) M1 M2 M3 M4 M5 575.9689 0.6614 -5.2254 97.9787 -30.3627 6.8414 M6 M7 M8 M9 M10 M11 98.2273 -234.3868 -340.4555 150.7486 71.7737 -14.7132 t 1.8868 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -150.909 -38.221 0.747 35.432 177.335 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 575.9689 22.3188 25.806 < 2e-16 *** M1 0.6614 27.6538 0.024 0.980958 M2 -5.2254 27.6502 -0.189 0.850437 M3 97.9787 27.6473 3.544 0.000569 *** M4 -30.3627 27.6453 -1.098 0.274350 M5 6.8414 27.6441 0.247 0.804974 M6 98.2273 27.6437 3.553 0.000551 *** M7 -234.3868 27.6441 -8.479 8.39e-14 *** M8 -340.4555 27.6453 -12.315 < 2e-16 *** M9 150.7486 27.6473 5.453 2.84e-07 *** M10 71.7737 28.2958 2.537 0.012524 * M11 -14.7132 28.2946 -0.520 0.604055 t 1.8868 0.1499 12.589 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 63.27 on 116 degrees of freedom Multiple R-squared: 0.8645, Adjusted R-squared: 0.8504 F-statistic: 61.66 on 12 and 116 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.0781493532 0.1562987063 0.9218506 [2,] 0.0251131768 0.0502263536 0.9748868 [3,] 0.0153070499 0.0306140997 0.9846930 [4,] 0.0061243147 0.0122486293 0.9938757 [5,] 0.0074549532 0.0149099064 0.9925450 [6,] 0.0333516582 0.0667033164 0.9666483 [7,] 0.0377626537 0.0755253075 0.9622373 [8,] 0.0214708922 0.0429417844 0.9785291 [9,] 0.0109212675 0.0218425350 0.9890787 [10,] 0.0062439139 0.0124878279 0.9937561 [11,] 0.0041873826 0.0083747652 0.9958126 [12,] 0.0019729290 0.0039458579 0.9980271 [13,] 0.0013999984 0.0027999968 0.9986000 [14,] 0.0006350975 0.0012701949 0.9993649 [15,] 0.0005116636 0.0010233272 0.9994883 [16,] 0.0004269571 0.0008539141 0.9995730 [17,] 0.0002507317 0.0005014634 0.9997493 [18,] 0.0004365131 0.0008730263 0.9995635 [19,] 0.0002714825 0.0005429650 0.9997285 [20,] 0.0003414741 0.0006829482 0.9996585 [21,] 0.0003911451 0.0007822902 0.9996089 [22,] 0.0002387691 0.0004775382 0.9997612 [23,] 0.0001985783 0.0003971567 0.9998014 [24,] 0.0009081348 0.0018162695 0.9990919 [25,] 0.0007776857 0.0015553714 0.9992223 [26,] 0.0004613081 0.0009226162 0.9995387 [27,] 0.0003983763 0.0007967525 0.9996016 [28,] 0.0005165771 0.0010331542 0.9994834 [29,] 0.0004423599 0.0008847199 0.9995576 [30,] 0.0004366161 0.0008732323 0.9995634 [31,] 0.0003506854 0.0007013708 0.9996493 [32,] 0.0002963521 0.0005927042 0.9997036 [33,] 0.0004275080 0.0008550160 0.9995725 [34,] 0.0003028105 0.0006056210 0.9996972 [35,] 0.0002967505 0.0005935010 0.9997032 [36,] 0.0001769729 0.0003539458 0.9998230 [37,] 0.0001244974 0.0002489949 0.9998755 [38,] 0.0001200018 0.0002400036 0.9998800 [39,] 0.0004355534 0.0008711069 0.9995644 [40,] 0.0005121584 0.0010243168 0.9994878 [41,] 0.0006682799 0.0013365599 0.9993317 [42,] 0.0004408478 0.0008816955 0.9995592 [43,] 0.0007481335 0.0014962671 0.9992519 [44,] 0.0010339293 0.0020678585 0.9989661 [45,] 0.0008825659 0.0017651319 0.9991174 [46,] 0.0014983006 0.0029966012 0.9985017 [47,] 0.0013815189 0.0027630378 0.9986185 [48,] 0.0026471656 0.0052943312 0.9973528 [49,] 0.0027862011 0.0055724022 0.9972138 [50,] 0.0034722673 0.0069445346 0.9965277 [51,] 0.0030187214 0.0060374427 0.9969813 [52,] 0.0036020679 0.0072041357 0.9963979 [53,] 0.0044719071 0.0089438141 0.9955281 [54,] 0.0118921608 0.0237843216 0.9881078 [55,] 0.0090820764 0.0181641528 0.9909179 [56,] 0.0062992736 0.0125985472 0.9937007 [57,] 0.0050261317 0.0100522633 0.9949739 [58,] 0.0040095661 0.0080191322 0.9959904 [59,] 0.0029666799 0.0059333597 0.9970333 [60,] 0.0029362066 0.0058724131 0.9970638 [61,] 0.0019475939 0.0038951878 0.9980524 [62,] 0.0018056947 0.0036113893 0.9981943 [63,] 0.0015259371 0.0030518743 0.9984741 [64,] 0.0014333692 0.0028667385 0.9985666 [65,] 0.0011223226 0.0022446453 0.9988777 [66,] 0.0014398218 0.0028796436 0.9985602 [67,] 0.0031972518 0.0063945037 0.9968027 [68,] 0.0025008115 0.0050016229 0.9974992 [69,] 0.0031023568 0.0062047137 0.9968976 [70,] 0.0020176736 0.0040353472 0.9979823 [71,] 0.0034671933 0.0069343866 0.9965328 [72,] 0.0338237537 0.0676475073 0.9661762 [73,] 0.0293754108 0.0587508217 0.9706246 [74,] 0.0999631088 0.1999262176 0.9000369 [75,] 0.1682312608 0.3364625216 0.8317687 [76,] 0.1550442632 0.3100885263 0.8449557 [77,] 0.1216057348 0.2432114696 0.8783943 [78,] 0.1789591863 0.3579183726 0.8210408 [79,] 0.1472268256 0.2944536513 0.8527732 [80,] 0.1870884062 0.3741768124 0.8129116 [81,] 0.3682658859 0.7365317717 0.6317341 [82,] 0.3229715226 0.6459430452 0.6770285 [83,] 0.2881786394 0.5763572787 0.7118214 [84,] 0.4384268840 0.8768537680 0.5615731 [85,] 0.4718695487 0.9437390973 0.5281305 [86,] 0.5987460622 0.8025078756 0.4012539 [87,] 0.5537831824 0.8924336352 0.4462168 [88,] 0.4839159097 0.9678318194 0.5160841 [89,] 0.4023547807 0.8047095615 0.5976452 [90,] 0.4223013093 0.8446026185 0.5776987 [91,] 0.3369299150 0.6738598300 0.6630701 [92,] 0.4687239459 0.9374478917 0.5312761 [93,] 0.3944319867 0.7888639734 0.6055680 [94,] 0.3447145930 0.6894291861 0.6552854 [95,] 0.2557246819 0.5114493637 0.7442753 [96,] 0.1892884730 0.3785769461 0.8107115 [97,] 0.1542328875 0.3084657751 0.8457671 [98,] 0.4443523360 0.8887046720 0.5556477 > postscript(file="/var/wessaorg/rcomp/tmp/1amgr1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/28suy1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/38y351323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/4hktc1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/5ympf1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 129 Frequency = 1 1 2 3 4 5 38.48282828 39.48282828 -32.60808081 26.84646465 21.75555556 6 7 8 9 10 -49.51717172 33.21010101 105.39191919 -104.69898990 86.38909091 11 12 13 14 15 28.98909091 40.38909091 28.84080808 -11.15919192 -7.25010101 16 17 18 19 20 -23.79555556 4.11353535 -27.15919192 43.56808081 33.74989899 21 22 23 24 25 -12.34101010 0.74707071 39.34707071 21.74707071 -15.80121212 26 27 28 29 30 31.19878788 -33.89212121 28.56242424 -3.52848485 0.19878788 31 32 33 34 35 74.92606061 41.10787879 14.01696970 10.10505051 -37.29494949 36 37 38 39 40 80.10505051 -19.44323232 53.55676768 77.46585859 55.92040404 41 42 43 44 45 -4.17050505 31.55676768 -10.71595960 33.46585859 27.37494949 46 47 48 49 50 -5.53696970 46.06303030 -25.53696970 25.91474747 -27.08525253 51 52 53 54 55 -8.17616162 -8.72161616 38.18747475 77.91474747 -27.35797980 56 57 58 59 60 25.82383838 -10.26707071 -70.17898990 -71.57898990 -13.17898990 61 62 63 64 65 48.27272727 3.27272727 -109.81818182 -72.36363636 23.54545455 66 67 68 69 70 -67.72727273 -82.00000000 -32.81818182 -150.90909091 -64.82101010 71 72 73 74 75 -38.22101010 -58.82101010 -72.36929293 -67.36929293 -97.46020202 76 77 78 79 80 -35.00565657 -96.09656566 -90.36929293 -98.64202020 -42.46020202 81 82 83 84 85 -87.55111111 49.53696970 -68.86303030 -105.46303030 -52.01131313 86 87 88 89 90 -116.01131313 -123.10222222 3.35232323 -121.73858586 71.98868687 91 92 93 94 95 17.71595960 -52.10222222 14.80686869 2.89494949 -32.50505051 96 97 98 99 100 100.89494949 15.34666667 29.34666667 145.25575758 54.71030303 101 102 103 104 105 -39.38060606 39.34666667 -3.92606061 -44.74424242 66.16484848 106 107 108 109 110 -6.74707071 128.85292929 2.25292929 28.70464646 13.70464646 111 112 113 114 115 94.61373737 16.06828283 -0.02262626 56.70464646 35.43191919 116 117 118 119 120 -16.38626263 75.52282828 -2.38909091 5.21090909 -42.38909091 121 122 123 124 125 -25.93737374 51.06262626 94.97171717 -45.57373737 177.33535354 126 127 128 129 -42.93737374 17.78989899 -51.02828283 167.88080808 > postscript(file="/var/wessaorg/rcomp/tmp/69txv1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 129 Frequency = 1 lag(myerror, k = 1) myerror 0 38.48282828 NA 1 39.48282828 38.48282828 2 -32.60808081 39.48282828 3 26.84646465 -32.60808081 4 21.75555556 26.84646465 5 -49.51717172 21.75555556 6 33.21010101 -49.51717172 7 105.39191919 33.21010101 8 -104.69898990 105.39191919 9 86.38909091 -104.69898990 10 28.98909091 86.38909091 11 40.38909091 28.98909091 12 28.84080808 40.38909091 13 -11.15919192 28.84080808 14 -7.25010101 -11.15919192 15 -23.79555556 -7.25010101 16 4.11353535 -23.79555556 17 -27.15919192 4.11353535 18 43.56808081 -27.15919192 19 33.74989899 43.56808081 20 -12.34101010 33.74989899 21 0.74707071 -12.34101010 22 39.34707071 0.74707071 23 21.74707071 39.34707071 24 -15.80121212 21.74707071 25 31.19878788 -15.80121212 26 -33.89212121 31.19878788 27 28.56242424 -33.89212121 28 -3.52848485 28.56242424 29 0.19878788 -3.52848485 30 74.92606061 0.19878788 31 41.10787879 74.92606061 32 14.01696970 41.10787879 33 10.10505051 14.01696970 34 -37.29494949 10.10505051 35 80.10505051 -37.29494949 36 -19.44323232 80.10505051 37 53.55676768 -19.44323232 38 77.46585859 53.55676768 39 55.92040404 77.46585859 40 -4.17050505 55.92040404 41 31.55676768 -4.17050505 42 -10.71595960 31.55676768 43 33.46585859 -10.71595960 44 27.37494949 33.46585859 45 -5.53696970 27.37494949 46 46.06303030 -5.53696970 47 -25.53696970 46.06303030 48 25.91474747 -25.53696970 49 -27.08525253 25.91474747 50 -8.17616162 -27.08525253 51 -8.72161616 -8.17616162 52 38.18747475 -8.72161616 53 77.91474747 38.18747475 54 -27.35797980 77.91474747 55 25.82383838 -27.35797980 56 -10.26707071 25.82383838 57 -70.17898990 -10.26707071 58 -71.57898990 -70.17898990 59 -13.17898990 -71.57898990 60 48.27272727 -13.17898990 61 3.27272727 48.27272727 62 -109.81818182 3.27272727 63 -72.36363636 -109.81818182 64 23.54545455 -72.36363636 65 -67.72727273 23.54545455 66 -82.00000000 -67.72727273 67 -32.81818182 -82.00000000 68 -150.90909091 -32.81818182 69 -64.82101010 -150.90909091 70 -38.22101010 -64.82101010 71 -58.82101010 -38.22101010 72 -72.36929293 -58.82101010 73 -67.36929293 -72.36929293 74 -97.46020202 -67.36929293 75 -35.00565657 -97.46020202 76 -96.09656566 -35.00565657 77 -90.36929293 -96.09656566 78 -98.64202020 -90.36929293 79 -42.46020202 -98.64202020 80 -87.55111111 -42.46020202 81 49.53696970 -87.55111111 82 -68.86303030 49.53696970 83 -105.46303030 -68.86303030 84 -52.01131313 -105.46303030 85 -116.01131313 -52.01131313 86 -123.10222222 -116.01131313 87 3.35232323 -123.10222222 88 -121.73858586 3.35232323 89 71.98868687 -121.73858586 90 17.71595960 71.98868687 91 -52.10222222 17.71595960 92 14.80686869 -52.10222222 93 2.89494949 14.80686869 94 -32.50505051 2.89494949 95 100.89494949 -32.50505051 96 15.34666667 100.89494949 97 29.34666667 15.34666667 98 145.25575758 29.34666667 99 54.71030303 145.25575758 100 -39.38060606 54.71030303 101 39.34666667 -39.38060606 102 -3.92606061 39.34666667 103 -44.74424242 -3.92606061 104 66.16484848 -44.74424242 105 -6.74707071 66.16484848 106 128.85292929 -6.74707071 107 2.25292929 128.85292929 108 28.70464646 2.25292929 109 13.70464646 28.70464646 110 94.61373737 13.70464646 111 16.06828283 94.61373737 112 -0.02262626 16.06828283 113 56.70464646 -0.02262626 114 35.43191919 56.70464646 115 -16.38626263 35.43191919 116 75.52282828 -16.38626263 117 -2.38909091 75.52282828 118 5.21090909 -2.38909091 119 -42.38909091 5.21090909 120 -25.93737374 -42.38909091 121 51.06262626 -25.93737374 122 94.97171717 51.06262626 123 -45.57373737 94.97171717 124 177.33535354 -45.57373737 125 -42.93737374 177.33535354 126 17.78989899 -42.93737374 127 -51.02828283 17.78989899 128 167.88080808 -51.02828283 129 NA 167.88080808 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 39.48282828 38.48282828 [2,] -32.60808081 39.48282828 [3,] 26.84646465 -32.60808081 [4,] 21.75555556 26.84646465 [5,] -49.51717172 21.75555556 [6,] 33.21010101 -49.51717172 [7,] 105.39191919 33.21010101 [8,] -104.69898990 105.39191919 [9,] 86.38909091 -104.69898990 [10,] 28.98909091 86.38909091 [11,] 40.38909091 28.98909091 [12,] 28.84080808 40.38909091 [13,] -11.15919192 28.84080808 [14,] -7.25010101 -11.15919192 [15,] -23.79555556 -7.25010101 [16,] 4.11353535 -23.79555556 [17,] -27.15919192 4.11353535 [18,] 43.56808081 -27.15919192 [19,] 33.74989899 43.56808081 [20,] -12.34101010 33.74989899 [21,] 0.74707071 -12.34101010 [22,] 39.34707071 0.74707071 [23,] 21.74707071 39.34707071 [24,] -15.80121212 21.74707071 [25,] 31.19878788 -15.80121212 [26,] -33.89212121 31.19878788 [27,] 28.56242424 -33.89212121 [28,] -3.52848485 28.56242424 [29,] 0.19878788 -3.52848485 [30,] 74.92606061 0.19878788 [31,] 41.10787879 74.92606061 [32,] 14.01696970 41.10787879 [33,] 10.10505051 14.01696970 [34,] -37.29494949 10.10505051 [35,] 80.10505051 -37.29494949 [36,] -19.44323232 80.10505051 [37,] 53.55676768 -19.44323232 [38,] 77.46585859 53.55676768 [39,] 55.92040404 77.46585859 [40,] -4.17050505 55.92040404 [41,] 31.55676768 -4.17050505 [42,] -10.71595960 31.55676768 [43,] 33.46585859 -10.71595960 [44,] 27.37494949 33.46585859 [45,] -5.53696970 27.37494949 [46,] 46.06303030 -5.53696970 [47,] -25.53696970 46.06303030 [48,] 25.91474747 -25.53696970 [49,] -27.08525253 25.91474747 [50,] -8.17616162 -27.08525253 [51,] -8.72161616 -8.17616162 [52,] 38.18747475 -8.72161616 [53,] 77.91474747 38.18747475 [54,] -27.35797980 77.91474747 [55,] 25.82383838 -27.35797980 [56,] -10.26707071 25.82383838 [57,] -70.17898990 -10.26707071 [58,] -71.57898990 -70.17898990 [59,] -13.17898990 -71.57898990 [60,] 48.27272727 -13.17898990 [61,] 3.27272727 48.27272727 [62,] -109.81818182 3.27272727 [63,] -72.36363636 -109.81818182 [64,] 23.54545455 -72.36363636 [65,] -67.72727273 23.54545455 [66,] -82.00000000 -67.72727273 [67,] -32.81818182 -82.00000000 [68,] -150.90909091 -32.81818182 [69,] -64.82101010 -150.90909091 [70,] -38.22101010 -64.82101010 [71,] -58.82101010 -38.22101010 [72,] -72.36929293 -58.82101010 [73,] -67.36929293 -72.36929293 [74,] -97.46020202 -67.36929293 [75,] -35.00565657 -97.46020202 [76,] -96.09656566 -35.00565657 [77,] -90.36929293 -96.09656566 [78,] -98.64202020 -90.36929293 [79,] -42.46020202 -98.64202020 [80,] -87.55111111 -42.46020202 [81,] 49.53696970 -87.55111111 [82,] -68.86303030 49.53696970 [83,] -105.46303030 -68.86303030 [84,] -52.01131313 -105.46303030 [85,] -116.01131313 -52.01131313 [86,] -123.10222222 -116.01131313 [87,] 3.35232323 -123.10222222 [88,] -121.73858586 3.35232323 [89,] 71.98868687 -121.73858586 [90,] 17.71595960 71.98868687 [91,] -52.10222222 17.71595960 [92,] 14.80686869 -52.10222222 [93,] 2.89494949 14.80686869 [94,] -32.50505051 2.89494949 [95,] 100.89494949 -32.50505051 [96,] 15.34666667 100.89494949 [97,] 29.34666667 15.34666667 [98,] 145.25575758 29.34666667 [99,] 54.71030303 145.25575758 [100,] -39.38060606 54.71030303 [101,] 39.34666667 -39.38060606 [102,] -3.92606061 39.34666667 [103,] -44.74424242 -3.92606061 [104,] 66.16484848 -44.74424242 [105,] -6.74707071 66.16484848 [106,] 128.85292929 -6.74707071 [107,] 2.25292929 128.85292929 [108,] 28.70464646 2.25292929 [109,] 13.70464646 28.70464646 [110,] 94.61373737 13.70464646 [111,] 16.06828283 94.61373737 [112,] -0.02262626 16.06828283 [113,] 56.70464646 -0.02262626 [114,] 35.43191919 56.70464646 [115,] -16.38626263 35.43191919 [116,] 75.52282828 -16.38626263 [117,] -2.38909091 75.52282828 [118,] 5.21090909 -2.38909091 [119,] -42.38909091 5.21090909 [120,] -25.93737374 -42.38909091 [121,] 51.06262626 -25.93737374 [122,] 94.97171717 51.06262626 [123,] -45.57373737 94.97171717 [124,] 177.33535354 -45.57373737 [125,] -42.93737374 177.33535354 [126,] 17.78989899 -42.93737374 [127,] -51.02828283 17.78989899 [128,] 167.88080808 -51.02828283 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 39.48282828 38.48282828 2 -32.60808081 39.48282828 3 26.84646465 -32.60808081 4 21.75555556 26.84646465 5 -49.51717172 21.75555556 6 33.21010101 -49.51717172 7 105.39191919 33.21010101 8 -104.69898990 105.39191919 9 86.38909091 -104.69898990 10 28.98909091 86.38909091 11 40.38909091 28.98909091 12 28.84080808 40.38909091 13 -11.15919192 28.84080808 14 -7.25010101 -11.15919192 15 -23.79555556 -7.25010101 16 4.11353535 -23.79555556 17 -27.15919192 4.11353535 18 43.56808081 -27.15919192 19 33.74989899 43.56808081 20 -12.34101010 33.74989899 21 0.74707071 -12.34101010 22 39.34707071 0.74707071 23 21.74707071 39.34707071 24 -15.80121212 21.74707071 25 31.19878788 -15.80121212 26 -33.89212121 31.19878788 27 28.56242424 -33.89212121 28 -3.52848485 28.56242424 29 0.19878788 -3.52848485 30 74.92606061 0.19878788 31 41.10787879 74.92606061 32 14.01696970 41.10787879 33 10.10505051 14.01696970 34 -37.29494949 10.10505051 35 80.10505051 -37.29494949 36 -19.44323232 80.10505051 37 53.55676768 -19.44323232 38 77.46585859 53.55676768 39 55.92040404 77.46585859 40 -4.17050505 55.92040404 41 31.55676768 -4.17050505 42 -10.71595960 31.55676768 43 33.46585859 -10.71595960 44 27.37494949 33.46585859 45 -5.53696970 27.37494949 46 46.06303030 -5.53696970 47 -25.53696970 46.06303030 48 25.91474747 -25.53696970 49 -27.08525253 25.91474747 50 -8.17616162 -27.08525253 51 -8.72161616 -8.17616162 52 38.18747475 -8.72161616 53 77.91474747 38.18747475 54 -27.35797980 77.91474747 55 25.82383838 -27.35797980 56 -10.26707071 25.82383838 57 -70.17898990 -10.26707071 58 -71.57898990 -70.17898990 59 -13.17898990 -71.57898990 60 48.27272727 -13.17898990 61 3.27272727 48.27272727 62 -109.81818182 3.27272727 63 -72.36363636 -109.81818182 64 23.54545455 -72.36363636 65 -67.72727273 23.54545455 66 -82.00000000 -67.72727273 67 -32.81818182 -82.00000000 68 -150.90909091 -32.81818182 69 -64.82101010 -150.90909091 70 -38.22101010 -64.82101010 71 -58.82101010 -38.22101010 72 -72.36929293 -58.82101010 73 -67.36929293 -72.36929293 74 -97.46020202 -67.36929293 75 -35.00565657 -97.46020202 76 -96.09656566 -35.00565657 77 -90.36929293 -96.09656566 78 -98.64202020 -90.36929293 79 -42.46020202 -98.64202020 80 -87.55111111 -42.46020202 81 49.53696970 -87.55111111 82 -68.86303030 49.53696970 83 -105.46303030 -68.86303030 84 -52.01131313 -105.46303030 85 -116.01131313 -52.01131313 86 -123.10222222 -116.01131313 87 3.35232323 -123.10222222 88 -121.73858586 3.35232323 89 71.98868687 -121.73858586 90 17.71595960 71.98868687 91 -52.10222222 17.71595960 92 14.80686869 -52.10222222 93 2.89494949 14.80686869 94 -32.50505051 2.89494949 95 100.89494949 -32.50505051 96 15.34666667 100.89494949 97 29.34666667 15.34666667 98 145.25575758 29.34666667 99 54.71030303 145.25575758 100 -39.38060606 54.71030303 101 39.34666667 -39.38060606 102 -3.92606061 39.34666667 103 -44.74424242 -3.92606061 104 66.16484848 -44.74424242 105 -6.74707071 66.16484848 106 128.85292929 -6.74707071 107 2.25292929 128.85292929 108 28.70464646 2.25292929 109 13.70464646 28.70464646 110 94.61373737 13.70464646 111 16.06828283 94.61373737 112 -0.02262626 16.06828283 113 56.70464646 -0.02262626 114 35.43191919 56.70464646 115 -16.38626263 35.43191919 116 75.52282828 -16.38626263 117 -2.38909091 75.52282828 118 5.21090909 -2.38909091 119 -42.38909091 5.21090909 120 -25.93737374 -42.38909091 121 51.06262626 -25.93737374 122 94.97171717 51.06262626 123 -45.57373737 94.97171717 124 177.33535354 -45.57373737 125 -42.93737374 177.33535354 126 17.78989899 -42.93737374 127 -51.02828283 17.78989899 128 167.88080808 -51.02828283 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/7urj31323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/81k7c1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/97n3f1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/wessaorg/rcomp/tmp/10gyeo1323439096.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/11whud1323439096.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/122nq01323439096.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/13affj1323439096.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/148de31323439096.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/155y761323439096.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/16jejq1323439096.tab") + } > > try(system("convert tmp/1amgr1323439096.ps tmp/1amgr1323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/28suy1323439096.ps tmp/28suy1323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/38y351323439096.ps tmp/38y351323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/4hktc1323439096.ps tmp/4hktc1323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/5ympf1323439096.ps tmp/5ympf1323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/69txv1323439096.ps tmp/69txv1323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/7urj31323439096.ps tmp/7urj31323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/81k7c1323439096.ps tmp/81k7c1323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/97n3f1323439096.ps tmp/97n3f1323439096.png",intern=TRUE)) character(0) > try(system("convert tmp/10gyeo1323439096.ps tmp/10gyeo1323439096.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 4.300 0.663 4.976