R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(252101 + ,62 + ,438 + ,92 + ,34 + ,104 + ,124252 + ,165119 + ,134577 + ,59 + ,330 + ,58 + ,30 + ,111 + ,98956 + ,107269 + ,198520 + ,62 + ,609 + ,62 + ,38 + ,93 + ,98073 + ,93497 + ,189326 + ,94 + ,1015 + ,108 + ,34 + ,119 + ,106816 + ,100269 + ,137449 + ,44 + ,294 + ,55 + ,25 + ,57 + ,41449 + ,91627 + ,65295 + ,27 + ,164 + ,8 + ,31 + ,80 + ,76173 + ,47552 + ,439387 + ,103 + ,1912 + ,134 + ,29 + ,107 + ,177551 + ,233933 + ,33186 + ,19 + ,111 + ,1 + ,18 + ,22 + ,22807 + ,6853 + ,178368 + ,51 + ,698 + ,64 + ,30 + ,103 + ,126938 + ,104380 + ,186657 + ,38 + ,556 + ,77 + ,29 + ,72 + ,61680 + ,98431 + ,265539 + ,97 + ,717 + ,86 + ,39 + ,127 + ,72117 + ,156949 + ,191088 + ,96 + ,495 + ,93 + ,50 + ,168 + ,79738 + ,81817 + ,138866 + ,57 + ,544 + ,44 + ,33 + ,100 + ,57793 + ,59238 + ,296878 + ,66 + ,959 + ,106 + ,46 + ,143 + ,91677 + ,101138 + ,192648 + ,72 + ,540 + ,63 + ,38 + ,79 + ,64631 + ,107158 + ,333462 + ,162 + ,1486 + ,160 + ,52 + ,183 + ,106385 + ,155499 + ,243571 + ,58 + ,635 + ,104 + ,32 + ,123 + ,161961 + ,156274 + ,263451 + ,130 + ,940 + ,86 + ,35 + ,81 + ,112669 + ,121777 + ,155679 + ,49 + ,452 + ,93 + ,25 + ,74 + ,114029 + ,105037 + ,227053 + ,71 + ,617 + ,119 + ,42 + ,158 + ,124550 + ,118661 + ,240028 + ,63 + ,695 + ,107 + ,40 + ,133 + ,105416 + ,131187 + ,388549 + ,90 + ,1046 + ,86 + ,35 + ,128 + ,72875 + ,145026 + ,156540 + ,34 + ,405 + ,50 + ,25 + ,84 + ,81964 + ,107016 + ,148421 + ,43 + ,477 + ,92 + ,46 + ,184 + ,104880 + ,87242 + ,177732 + ,97 + ,1012 + ,123 + ,36 + ,127 + ,76302 + ,91699 + ,191441 + ,106 + ,842 + ,81 + ,35 + ,128 + ,96740 + ,110087 + ,249893 + ,122 + ,994 + ,93 + ,38 + ,118 + ,93071 + ,145447 + ,236812 + ,76 + ,530 + ,113 + ,35 + ,125 + ,78912 + ,143307 + ,142329 + ,45 + ,515 + ,52 + ,28 + ,89 + ,35224 + ,61678 + ,259667 + ,53 + ,766 + ,113 + ,37 + ,122 + ,90694 + ,210080 + ,231625 + ,66 + ,734 + ,112 + ,40 + ,151 + ,125369 + ,165005 + ,176062 + ,67 + ,551 + ,44 + ,42 + ,122 + ,80849 + ,97806 + ,286683 + ,79 + ,718 + ,123 + ,44 + ,162 + ,104434 + ,184471 + ,87485 + ,33 + ,280 + ,38 + ,33 + ,121 + ,65702 + ,27786 + ,322865 + ,83 + ,1055 + ,111 + ,35 + ,132 + ,108179 + ,184458 + ,247082 + ,51 + ,950 + ,77 + ,37 + ,110 + ,63583 + ,98765 + ,346011 + ,106 + ,1038 + ,92 + ,39 + ,135 + ,95066 + ,178441 + ,191653 + ,74 + ,552 + ,74 + ,32 + ,80 + ,62486 + ,100619 + ,114673 + ,31 + ,275 + ,33 + ,17 + ,46 + ,31081 + ,58391 + ,284224 + ,162 + ,986 + ,105 + ,34 + ,127 + ,94584 + ,151672 + ,284195 + ,72 + ,1336 + ,108 + ,33 + ,103 + ,87408 + ,124437 + ,155363 + ,60 + ,565 + ,66 + ,35 + ,95 + ,68966 + ,79929 + ,177306 + ,67 + ,571 + ,69 + ,32 + ,100 + ,88766 + ,123064 + ,144571 + ,49 + ,404 + ,62 + ,35 + ,102 + ,57139 + ,50466 + ,140319 + ,73 + ,985 + ,50 + ,45 + ,45 + ,90586 + ,100991 + ,405267 + ,135 + ,1851 + ,91 + ,38 + ,122 + ,109249 + ,79367 + ,78800 + ,42 + ,330 + ,20 + ,26 + ,66 + ,33032 + ,56968 + ,201970 + ,69 + ,611 + ,101 + ,45 + ,159 + ,96056 + ,106257 + ,302674 + ,99 + ,1249 + ,129 + ,44 + ,153 + ,146648 + ,178412 + ,164733 + ,50 + ,812 + ,93 + ,40 + ,131 + ,80613 + ,98520 + ,194221 + ,68 + ,501 + ,89 + ,33 + ,113 + ,87026 + ,153670 + ,24188 + ,24 + ,218 + ,8 + ,4 + ,7 + ,5950 + ,15049 + ,346142 + ,282 + ,787 + ,80 + ,41 + ,147 + ,131106 + ,174478 + ,65029 + ,17 + ,255 + ,21 + ,18 + ,61 + ,32551 + ,25109 + ,101097 + ,64 + ,454 + ,30 + ,14 + ,41 + ,31701 + ,45824 + ,246088 + ,46 + ,944 + ,86 + ,33 + ,108 + ,91072 + ,116772 + ,273108 + ,75 + ,600 + ,116 + ,49 + ,184 + ,159803 + ,189150 + ,282220 + ,160 + ,977 + ,106 + ,32 + ,115 + ,143950 + ,194404 + ,275505 + ,120 + ,872 + ,127 + ,37 + ,132 + ,112368 + ,185881 + ,214872 + ,74 + ,690 + ,75 + ,32 + ,113 + ,82124 + ,67508 + ,335121 + ,124 + ,1176 + ,138 + ,41 + ,141 + ,144068 + ,188597 + ,267171 + ,107 + ,1013 + ,114 + ,25 + ,65 + ,162627 + ,203618 + ,189637 + ,89 + ,894 + ,55 + ,42 + ,94 + ,55062 + ,87232 + ,229512 + ,78 + ,777 + ,67 + ,35 + ,121 + ,95329 + ,110875 + ,209798 + ,61 + ,521 + ,45 + ,33 + ,112 + ,105612 + ,144756 + ,201345 + ,60 + ,409 + ,88 + ,28 + ,81 + ,62853 + ,129825 + ,163833 + ,114 + ,493 + ,67 + ,31 + ,116 + ,125976 + ,92189 + ,204250 + ,129 + ,757 + ,75 + ,40 + ,132 + ,79146 + ,121158 + ,197813 + ,67 + ,736 + ,114 + ,32 + ,104 + ,108461 + ,96219 + ,132955 + ,60 + ,511 + ,123 + ,25 + ,80 + ,99971 + ,84128 + ,216092 + ,59 + ,789 + ,86 + ,42 + ,145 + ,77826 + ,97960 + ,73566 + ,32 + ,385 + ,22 + ,23 + ,67 + ,22618 + ,23824 + ,213198 + ,67 + ,644 + ,67 + ,42 + ,159 + ,84892 + ,103515 + ,181713 + ,50 + ,664 + ,77 + ,38 + ,90 + ,92059 + ,91313 + ,148698 + ,49 + ,505 + ,105 + ,34 + ,120 + ,77993 + ,85407 + ,300103 + ,70 + ,878 + ,119 + ,38 + ,126 + ,104155 + ,95871 + ,251437 + ,78 + ,769 + ,88 + ,32 + ,118 + ,109840 + ,143846 + ,197295 + ,101 + ,499 + ,78 + ,37 + ,112 + ,238712 + ,155387 + ,158163 + ,55 + ,546 + ,112 + ,34 + ,123 + ,67486 + ,74429 + ,155529 + ,57 + ,551 + ,66 + ,33 + ,98 + ,68007 + ,74004 + ,132672 + ,41 + ,565 + ,58 + ,25 + ,78 + ,48194 + ,71987 + ,377213 + ,102 + ,1087 + ,132 + ,40 + ,119 + ,134796 + ,150629 + ,145905 + ,66 + ,649 + ,30 + ,26 + ,99 + ,38692 + ,68580 + ,223701 + ,87 + ,540 + ,100 + ,40 + ,81 + ,93587 + ,119855 + ,80953 + ,25 + ,437 + ,49 + ,8 + ,27 + ,56622 + ,55792 + ,130805 + ,47 + ,732 + ,26 + ,27 + ,77 + ,15986 + ,25157 + ,135082 + ,48 + ,308 + ,67 + ,32 + ,118 + ,113402 + ,90895 + ,305270 + ,160 + ,1243 + ,57 + ,33 + ,122 + ,97967 + ,117510 + ,271806 + ,95 + ,783 + ,95 + ,50 + ,103 + ,74844 + ,144774 + ,150949 + ,96 + ,933 + ,139 + ,37 + ,129 + ,136051 + ,77529 + ,225805 + ,79 + ,710 + ,73 + ,33 + ,69 + ,50548 + ,103123 + ,197389 + ,68 + ,563 + ,134 + ,34 + ,121 + ,112215 + ,104669 + ,156583 + ,56 + ,508 + ,37 + ,28 + ,81 + ,59591 + ,82414 + ,232718 + ,68 + ,968 + ,108 + ,36 + ,135 + ,59938 + ,82390 + ,261601 + ,70 + ,838 + ,58 + ,32 + ,116 + ,137639 + ,128446 + ,178489 + ,35 + ,523 + ,78 + ,32 + ,123 + ,143372 + ,111542 + ,200657 + ,44 + ,500 + ,88 + ,31 + ,111 + ,138599 + ,136048 + ,259244 + ,69 + ,694 + ,142 + ,35 + ,100 + ,174110 + ,197257 + ,313075 + ,130 + ,1060 + ,127 + ,58 + ,221 + ,135062 + ,162079 + ,346933 + ,100 + ,1232 + ,139 + ,27 + ,95 + ,175681 + ,206286 + ,246440 + ,104 + ,735 + ,108 + ,45 + ,153 + ,130307 + ,109858 + ,252444 + ,58 + ,757 + ,128 + ,37 + ,118 + ,139141 + ,182125 + ,159965 + ,159 + ,574 + ,62 + ,32 + ,50 + ,44244 + ,74168 + ,43287 + ,14 + ,214 + ,13 + ,19 + ,64 + ,43750 + ,19630 + ,172239 + ,68 + ,661 + ,89 + ,22 + ,34 + ,48029 + ,88634 + ,185198 + ,121 + ,640 + ,83 + ,35 + ,76 + ,95216 + ,128321 + ,227681 + ,43 + ,1015 + ,116 + ,36 + ,112 + ,92288 + ,118936 + ,260464 + ,81 + ,893 + ,157 + ,36 + ,115 + ,94588 + ,127044 + ,106288 + ,54 + ,293 + ,28 + ,23 + ,69 + ,197426 + ,178377 + ,109632 + ,77 + ,446 + ,83 + ,36 + ,108 + ,151244 + ,69581 + ,268905 + ,58 + ,538 + ,72 + ,36 + ,130 + ,139206 + ,168019 + ,266805 + ,78 + ,627 + ,134 + ,42 + ,110 + ,106271 + ,113598 + ,23623 + ,11 + ,156 + ,12 + ,1 + ,0 + ,1168 + ,5841 + ,152474 + ,66 + ,577 + ,106 + ,32 + ,83 + ,71764 + ,93116 + ,61857 + ,25 + ,192 + ,23 + ,11 + ,30 + ,25162 + ,24610 + ,144889 + ,43 + ,437 + ,83 + ,40 + ,106 + ,45635 + ,60611 + ,346600 + ,99 + ,1054 + ,126 + ,34 + ,91 + ,101817 + ,226620 + ,21054 + ,16 + ,146 + ,4 + ,0 + ,0 + ,855 + ,6622 + ,224051 + ,45 + ,751 + ,71 + ,27 + ,69 + ,100174 + ,121996 + ,31414 + ,19 + ,200 + ,18 + ,8 + ,9 + ,14116 + ,13155 + ,261043 + ,105 + ,1050 + ,98 + ,35 + ,123 + ,85008 + ,154158 + ,206108 + ,58 + ,601 + ,66 + ,44 + ,150 + ,124254 + ,78489 + ,154984 + ,74 + ,430 + ,44 + ,40 + ,125 + ,105793 + ,22007 + ,112933 + ,45 + ,467 + ,29 + ,28 + ,81 + ,117129 + ,72530 + ,38214 + ,34 + ,276 + ,16 + ,8 + ,21 + ,8773 + ,13983 + ,158671 + ,33 + ,528 + ,56 + ,35 + ,124 + ,94747 + ,73397 + ,302148 + ,71 + ,898 + ,112 + ,47 + ,168 + ,107549 + ,143878 + ,177918 + ,55 + ,411 + ,46 + ,46 + ,149 + ,97392 + ,119956 + ,350552 + ,70 + ,1362 + ,129 + ,42 + ,147 + ,126893 + ,181558 + ,275578 + ,91 + ,743 + ,139 + ,48 + ,145 + ,118850 + ,208236 + ,368746 + ,106 + ,1069 + ,136 + ,49 + ,172 + ,234853 + ,237085 + ,172464 + ,31 + ,431 + ,66 + ,35 + ,126 + ,74783 + ,110297 + ,94381 + ,35 + ,380 + ,42 + ,32 + ,89 + ,66089 + ,61394 + ,244295 + ,281 + ,790 + ,70 + ,36 + ,137 + ,95684 + ,81420 + ,382487 + ,154 + ,1367 + ,97 + ,42 + ,149 + ,139537 + ,191154 + ,114525 + ,40 + ,449 + ,49 + ,35 + ,121 + ,144253 + ,11798 + ,345884 + ,120 + ,1495 + ,113 + ,42 + ,149 + ,153824 + ,135724 + ,147989 + ,72 + ,651 + ,55 + ,34 + ,93 + ,63995 + ,68614 + ,216638 + ,45 + ,494 + ,100 + ,36 + ,119 + ,84891 + ,139926 + ,192862 + ,72 + ,667 + ,80 + ,36 + ,102 + ,61263 + ,105203 + ,184818 + ,107 + ,510 + ,29 + ,32 + ,45 + ,106221 + ,80338 + ,336707 + ,105 + ,1472 + ,95 + ,33 + ,104 + ,113587 + ,121376 + ,215836 + ,76 + ,675 + ,114 + ,35 + ,111 + ,113864 + ,124922 + ,173260 + ,63 + ,716 + ,41 + ,21 + ,78 + ,37238 + ,10901 + ,271773 + ,89 + ,814 + ,128 + ,40 + ,120 + ,119906 + ,135471 + ,130908 + ,52 + ,556 + ,142 + ,49 + ,176 + ,135096 + ,66395 + ,204009 + ,75 + ,887 + ,88 + ,33 + ,109 + ,151611 + ,134041 + ,245514 + ,92 + ,663 + ,147 + ,39 + ,132 + ,144645 + ,153554 + ,1 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,14688 + ,10 + ,85 + ,4 + ,0 + ,0 + ,6023 + ,7953 + ,98 + ,1 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,455 + ,2 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,195765 + ,75 + ,607 + ,56 + ,33 + ,78 + ,77457 + ,98922 + ,326038 + ,121 + ,934 + ,121 + ,42 + ,104 + ,62464 + ,165395 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,203 + ,4 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,7199 + ,5 + ,74 + ,7 + ,0 + ,0 + ,1644 + ,4245 + ,46660 + ,20 + ,259 + ,12 + ,5 + ,13 + ,6179 + ,21509 + ,17547 + ,5 + ,69 + ,0 + ,1 + ,4 + ,3926 + ,7670 + ,107465 + ,38 + ,267 + ,37 + ,38 + ,65 + ,42087 + ,15167 + ,969 + ,2 + ,0 + ,0 + ,0 + ,0 + ,0 + ,0 + ,173102 + ,58 + ,517 + ,47 + ,28 + ,55 + ,87656 + ,63891) + ,dim=c(8 + ,164) + ,dimnames=list(c('Time' + ,'Logins' + ,'CompendiumViews' + ,'BloggedComputations' + ,'ReviewedCompendiums' + ,'LongFeedbackmessages' + ,'Characters' + ,'WritingTime') + ,1:164)) > y <- array(NA,dim=c(8,164),dimnames=list(c('Time','Logins','CompendiumViews','BloggedComputations','ReviewedCompendiums','LongFeedbackmessages','Characters','WritingTime'),1:164)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > library(lattice) > library(lmtest) Loading required package: zoo > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Time Logins CompendiumViews BloggedComputations ReviewedCompendiums 1 252101 62 438 92 34 2 134577 59 330 58 30 3 198520 62 609 62 38 4 189326 94 1015 108 34 5 137449 44 294 55 25 6 65295 27 164 8 31 7 439387 103 1912 134 29 8 33186 19 111 1 18 9 178368 51 698 64 30 10 186657 38 556 77 29 11 265539 97 717 86 39 12 191088 96 495 93 50 13 138866 57 544 44 33 14 296878 66 959 106 46 15 192648 72 540 63 38 16 333462 162 1486 160 52 17 243571 58 635 104 32 18 263451 130 940 86 35 19 155679 49 452 93 25 20 227053 71 617 119 42 21 240028 63 695 107 40 22 388549 90 1046 86 35 23 156540 34 405 50 25 24 148421 43 477 92 46 25 177732 97 1012 123 36 26 191441 106 842 81 35 27 249893 122 994 93 38 28 236812 76 530 113 35 29 142329 45 515 52 28 30 259667 53 766 113 37 31 231625 66 734 112 40 32 176062 67 551 44 42 33 286683 79 718 123 44 34 87485 33 280 38 33 35 322865 83 1055 111 35 36 247082 51 950 77 37 37 346011 106 1038 92 39 38 191653 74 552 74 32 39 114673 31 275 33 17 40 284224 162 986 105 34 41 284195 72 1336 108 33 42 155363 60 565 66 35 43 177306 67 571 69 32 44 144571 49 404 62 35 45 140319 73 985 50 45 46 405267 135 1851 91 38 47 78800 42 330 20 26 48 201970 69 611 101 45 49 302674 99 1249 129 44 50 164733 50 812 93 40 51 194221 68 501 89 33 52 24188 24 218 8 4 53 346142 282 787 80 41 54 65029 17 255 21 18 55 101097 64 454 30 14 56 246088 46 944 86 33 57 273108 75 600 116 49 58 282220 160 977 106 32 59 275505 120 872 127 37 60 214872 74 690 75 32 61 335121 124 1176 138 41 62 267171 107 1013 114 25 63 189637 89 894 55 42 64 229512 78 777 67 35 65 209798 61 521 45 33 66 201345 60 409 88 28 67 163833 114 493 67 31 68 204250 129 757 75 40 69 197813 67 736 114 32 70 132955 60 511 123 25 71 216092 59 789 86 42 72 73566 32 385 22 23 73 213198 67 644 67 42 74 181713 50 664 77 38 75 148698 49 505 105 34 76 300103 70 878 119 38 77 251437 78 769 88 32 78 197295 101 499 78 37 79 158163 55 546 112 34 80 155529 57 551 66 33 81 132672 41 565 58 25 82 377213 102 1087 132 40 83 145905 66 649 30 26 84 223701 87 540 100 40 85 80953 25 437 49 8 86 130805 47 732 26 27 87 135082 48 308 67 32 88 305270 160 1243 57 33 89 271806 95 783 95 50 90 150949 96 933 139 37 91 225805 79 710 73 33 92 197389 68 563 134 34 93 156583 56 508 37 28 94 232718 68 968 108 36 95 261601 70 838 58 32 96 178489 35 523 78 32 97 200657 44 500 88 31 98 259244 69 694 142 35 99 313075 130 1060 127 58 100 346933 100 1232 139 27 101 246440 104 735 108 45 102 252444 58 757 128 37 103 159965 159 574 62 32 104 43287 14 214 13 19 105 172239 68 661 89 22 106 185198 121 640 83 35 107 227681 43 1015 116 36 108 260464 81 893 157 36 109 106288 54 293 28 23 110 109632 77 446 83 36 111 268905 58 538 72 36 112 266805 78 627 134 42 113 23623 11 156 12 1 114 152474 66 577 106 32 115 61857 25 192 23 11 116 144889 43 437 83 40 117 346600 99 1054 126 34 118 21054 16 146 4 0 119 224051 45 751 71 27 120 31414 19 200 18 8 121 261043 105 1050 98 35 122 206108 58 601 66 44 123 154984 74 430 44 40 124 112933 45 467 29 28 125 38214 34 276 16 8 126 158671 33 528 56 35 127 302148 71 898 112 47 128 177918 55 411 46 46 129 350552 70 1362 129 42 130 275578 91 743 139 48 131 368746 106 1069 136 49 132 172464 31 431 66 35 133 94381 35 380 42 32 134 244295 281 790 70 36 135 382487 154 1367 97 42 136 114525 40 449 49 35 137 345884 120 1495 113 42 138 147989 72 651 55 34 139 216638 45 494 100 36 140 192862 72 667 80 36 141 184818 107 510 29 32 142 336707 105 1472 95 33 143 215836 76 675 114 35 144 173260 63 716 41 21 145 271773 89 814 128 40 146 130908 52 556 142 49 147 204009 75 887 88 33 148 245514 92 663 147 39 149 1 0 0 0 0 150 14688 10 85 4 0 151 98 1 0 0 0 152 455 2 0 0 0 153 0 0 0 0 0 154 0 0 0 0 0 155 195765 75 607 56 33 156 326038 121 934 121 42 157 0 0 0 0 0 158 203 4 0 0 0 159 7199 5 74 7 0 160 46660 20 259 12 5 161 17547 5 69 0 1 162 107465 38 267 37 38 163 969 2 0 0 0 164 173102 58 517 47 28 LongFeedbackmessages Characters WritingTime 1 104 124252 165119 2 111 98956 107269 3 93 98073 93497 4 119 106816 100269 5 57 41449 91627 6 80 76173 47552 7 107 177551 233933 8 22 22807 6853 9 103 126938 104380 10 72 61680 98431 11 127 72117 156949 12 168 79738 81817 13 100 57793 59238 14 143 91677 101138 15 79 64631 107158 16 183 106385 155499 17 123 161961 156274 18 81 112669 121777 19 74 114029 105037 20 158 124550 118661 21 133 105416 131187 22 128 72875 145026 23 84 81964 107016 24 184 104880 87242 25 127 76302 91699 26 128 96740 110087 27 118 93071 145447 28 125 78912 143307 29 89 35224 61678 30 122 90694 210080 31 151 125369 165005 32 122 80849 97806 33 162 104434 184471 34 121 65702 27786 35 132 108179 184458 36 110 63583 98765 37 135 95066 178441 38 80 62486 100619 39 46 31081 58391 40 127 94584 151672 41 103 87408 124437 42 95 68966 79929 43 100 88766 123064 44 102 57139 50466 45 45 90586 100991 46 122 109249 79367 47 66 33032 56968 48 159 96056 106257 49 153 146648 178412 50 131 80613 98520 51 113 87026 153670 52 7 5950 15049 53 147 131106 174478 54 61 32551 25109 55 41 31701 45824 56 108 91072 116772 57 184 159803 189150 58 115 143950 194404 59 132 112368 185881 60 113 82124 67508 61 141 144068 188597 62 65 162627 203618 63 94 55062 87232 64 121 95329 110875 65 112 105612 144756 66 81 62853 129825 67 116 125976 92189 68 132 79146 121158 69 104 108461 96219 70 80 99971 84128 71 145 77826 97960 72 67 22618 23824 73 159 84892 103515 74 90 92059 91313 75 120 77993 85407 76 126 104155 95871 77 118 109840 143846 78 112 238712 155387 79 123 67486 74429 80 98 68007 74004 81 78 48194 71987 82 119 134796 150629 83 99 38692 68580 84 81 93587 119855 85 27 56622 55792 86 77 15986 25157 87 118 113402 90895 88 122 97967 117510 89 103 74844 144774 90 129 136051 77529 91 69 50548 103123 92 121 112215 104669 93 81 59591 82414 94 135 59938 82390 95 116 137639 128446 96 123 143372 111542 97 111 138599 136048 98 100 174110 197257 99 221 135062 162079 100 95 175681 206286 101 153 130307 109858 102 118 139141 182125 103 50 44244 74168 104 64 43750 19630 105 34 48029 88634 106 76 95216 128321 107 112 92288 118936 108 115 94588 127044 109 69 197426 178377 110 108 151244 69581 111 130 139206 168019 112 110 106271 113598 113 0 1168 5841 114 83 71764 93116 115 30 25162 24610 116 106 45635 60611 117 91 101817 226620 118 0 855 6622 119 69 100174 121996 120 9 14116 13155 121 123 85008 154158 122 150 124254 78489 123 125 105793 22007 124 81 117129 72530 125 21 8773 13983 126 124 94747 73397 127 168 107549 143878 128 149 97392 119956 129 147 126893 181558 130 145 118850 208236 131 172 234853 237085 132 126 74783 110297 133 89 66089 61394 134 137 95684 81420 135 149 139537 191154 136 121 144253 11798 137 149 153824 135724 138 93 63995 68614 139 119 84891 139926 140 102 61263 105203 141 45 106221 80338 142 104 113587 121376 143 111 113864 124922 144 78 37238 10901 145 120 119906 135471 146 176 135096 66395 147 109 151611 134041 148 132 144645 153554 149 0 0 0 150 0 6023 7953 151 0 0 0 152 0 0 0 153 0 0 0 154 0 0 0 155 78 77457 98922 156 104 62464 165395 157 0 0 0 158 0 0 0 159 0 1644 4245 160 13 6179 21509 161 4 3926 7670 162 65 42087 15167 163 0 0 0 164 55 87656 63891 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Logins CompendiumViews -5186.7698 191.1707 127.3480 BloggedComputations ReviewedCompendiums LongFeedbackmessages 40.5306 603.1585 190.1026 Characters WritingTime -0.1496 0.7179 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -90563 -16569 1804 12996 101179 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -5.187e+03 5.950e+03 -0.872 0.38472 Logins 1.912e+02 7.182e+01 2.662 0.00859 ** CompendiumViews 1.273e+02 1.018e+01 12.513 < 2e-16 *** BloggedComputations 4.053e+01 1.047e+02 0.387 0.69928 ReviewedCompendiums 6.032e+02 4.268e+02 1.413 0.15962 LongFeedbackmessages 1.901e+02 1.196e+02 1.589 0.11408 Characters -1.496e-01 7.897e-02 -1.894 0.06003 . WritingTime 7.179e-01 7.411e-02 9.687 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 27800 on 156 degrees of freedom Multiple R-squared: 0.9219, Adjusted R-squared: 0.9184 F-statistic: 263.2 on 7 and 156 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.11809367 2.361873e-01 8.819063e-01 [2,] 0.18527029 3.705406e-01 8.147297e-01 [3,] 0.10956082 2.191216e-01 8.904392e-01 [4,] 0.11236205 2.247241e-01 8.876380e-01 [5,] 0.09648752 1.929750e-01 9.035125e-01 [6,] 0.05876268 1.175254e-01 9.412373e-01 [7,] 0.03436978 6.873956e-02 9.656302e-01 [8,] 0.16421191 3.284238e-01 8.357881e-01 [9,] 0.11554418 2.310884e-01 8.844558e-01 [10,] 0.07892785 1.578557e-01 9.210722e-01 [11,] 0.05392037 1.078407e-01 9.460796e-01 [12,] 0.86239143 2.752171e-01 1.376086e-01 [13,] 0.82755240 3.448952e-01 1.724476e-01 [14,] 0.83684323 3.263135e-01 1.631568e-01 [15,] 0.88606050 2.278790e-01 1.139395e-01 [16,] 0.87533992 2.493202e-01 1.246601e-01 [17,] 0.88402506 2.319499e-01 1.159749e-01 [18,] 0.85332728 2.933454e-01 1.466727e-01 [19,] 0.81290163 3.741967e-01 1.870984e-01 [20,] 0.97145828 5.708344e-02 2.854172e-02 [21,] 0.97222559 5.554881e-02 2.777441e-02 [22,] 0.96650822 6.698355e-02 3.349178e-02 [23,] 0.95393714 9.212572e-02 4.606286e-02 [24,] 0.93973344 1.205331e-01 6.026656e-02 [25,] 0.92233588 1.553282e-01 7.766412e-02 [26,] 0.90099173 1.980165e-01 9.900827e-02 [27,] 0.90075868 1.984826e-01 9.924132e-02 [28,] 0.87718440 2.456312e-01 1.228156e-01 [29,] 0.86247452 2.750510e-01 1.375255e-01 [30,] 0.83731388 3.253722e-01 1.626861e-01 [31,] 0.80839932 3.832014e-01 1.916007e-01 [32,] 0.77715764 4.456847e-01 2.228424e-01 [33,] 0.76548249 4.690350e-01 2.345175e-01 [34,] 0.74815630 5.036874e-01 2.518437e-01 [35,] 0.95763790 8.472421e-02 4.236210e-02 [36,] 0.99119109 1.761782e-02 8.808909e-03 [37,] 0.99287854 1.424293e-02 7.121463e-03 [38,] 0.99001657 1.996686e-02 9.983429e-03 [39,] 0.99113036 1.773928e-02 8.869638e-03 [40,] 0.99615507 7.689853e-03 3.844926e-03 [41,] 0.99543128 9.137431e-03 4.568715e-03 [42,] 0.99516090 9.678192e-03 4.839096e-03 [43,] 0.99590105 8.197891e-03 4.098945e-03 [44,] 0.99421663 1.156673e-02 5.783366e-03 [45,] 0.99235897 1.528206e-02 7.641030e-03 [46,] 0.98974459 2.051082e-02 1.025541e-02 [47,] 0.98629534 2.740932e-02 1.370466e-02 [48,] 0.98737121 2.525758e-02 1.262879e-02 [49,] 0.98498099 3.003802e-02 1.501901e-02 [50,] 0.98870117 2.259765e-02 1.129883e-02 [51,] 0.98475933 3.048135e-02 1.524067e-02 [52,] 0.98453423 3.093153e-02 1.546577e-02 [53,] 0.98807047 2.385907e-02 1.192953e-02 [54,] 0.98405081 3.189838e-02 1.594919e-02 [55,] 0.97908013 4.183973e-02 2.091987e-02 [56,] 0.97898032 4.203935e-02 2.101968e-02 [57,] 0.97248433 5.503134e-02 2.751567e-02 [58,] 0.97880686 4.238628e-02 2.119314e-02 [59,] 0.97293950 5.412101e-02 2.706050e-02 [60,] 0.96731260 6.537481e-02 3.268740e-02 [61,] 0.95839321 8.321358e-02 4.160679e-02 [62,] 0.95350320 9.299359e-02 4.649680e-02 [63,] 0.94125385 1.174923e-01 5.874615e-02 [64,] 0.93060354 1.387929e-01 6.939646e-02 [65,] 0.91837727 1.632455e-01 8.162273e-02 [66,] 0.98516787 2.966425e-02 1.483213e-02 [67,] 0.98117974 3.764053e-02 1.882026e-02 [68,] 0.97521278 4.957444e-02 2.478722e-02 [69,] 0.96800570 6.398859e-02 3.199430e-02 [70,] 0.95927422 8.145157e-02 4.072578e-02 [71,] 0.95441445 9.117110e-02 4.558555e-02 [72,] 0.99628921 7.421588e-03 3.710794e-03 [73,] 0.99611890 7.762190e-03 3.881095e-03 [74,] 0.99611496 7.770080e-03 3.885040e-03 [75,] 0.99519874 9.602526e-03 4.801263e-03 [76,] 0.99462232 1.075536e-02 5.377680e-03 [77,] 0.99250495 1.499009e-02 7.495046e-03 [78,] 0.98979847 2.040306e-02 1.020153e-02 [79,] 0.98683582 2.632836e-02 1.316418e-02 [80,] 0.99815767 3.684667e-03 1.842333e-03 [81,] 0.99780120 4.397599e-03 2.198800e-03 [82,] 0.99702750 5.944996e-03 2.972498e-03 [83,] 0.99574382 8.512368e-03 4.256184e-03 [84,] 0.99416073 1.167854e-02 5.839271e-03 [85,] 0.99469295 1.061410e-02 5.307048e-03 [86,] 0.99269975 1.460050e-02 7.300252e-03 [87,] 0.99108864 1.782272e-02 8.911360e-03 [88,] 0.98790943 2.418115e-02 1.209057e-02 [89,] 0.98651888 2.696224e-02 1.348112e-02 [90,] 0.98418050 3.163901e-02 1.581950e-02 [91,] 0.98102170 3.795661e-02 1.897830e-02 [92,] 0.97498174 5.003653e-02 2.501826e-02 [93,] 0.97364965 5.270071e-02 2.635035e-02 [94,] 0.96838738 6.322524e-02 3.161262e-02 [95,] 0.95920883 8.158235e-02 4.079117e-02 [96,] 0.96802159 6.395682e-02 3.197841e-02 [97,] 0.97141323 5.717355e-02 2.858677e-02 [98,] 0.96275535 7.448930e-02 3.724465e-02 [99,] 0.98832608 2.334785e-02 1.167392e-02 [100,] 0.99257793 1.484414e-02 7.422070e-03 [101,] 0.99724947 5.501066e-03 2.750533e-03 [102,] 0.99948266 1.034678e-03 5.173391e-04 [103,] 0.99916969 1.660628e-03 8.303141e-04 [104,] 0.99928993 1.420131e-03 7.100653e-04 [105,] 0.99892131 2.157384e-03 1.078692e-03 [106,] 0.99832944 3.341114e-03 1.670557e-03 [107,] 0.99750398 4.992039e-03 2.496020e-03 [108,] 0.99616429 7.671416e-03 3.835708e-03 [109,] 0.99489557 1.020885e-02 5.104427e-03 [110,] 0.99335299 1.329402e-02 6.647009e-03 [111,] 0.99558839 8.823217e-03 4.411608e-03 [112,] 0.99576860 8.462796e-03 4.231398e-03 [113,] 0.99769715 4.605703e-03 2.302852e-03 [114,] 0.99770897 4.582063e-03 2.291031e-03 [115,] 0.99770717 4.585654e-03 2.292827e-03 [116,] 0.99643751 7.124990e-03 3.562495e-03 [117,] 0.99817904 3.641920e-03 1.820960e-03 [118,] 0.99706289 5.874224e-03 2.937112e-03 [119,] 0.99519038 9.619234e-03 4.809617e-03 [120,] 0.99504967 9.900654e-03 4.950327e-03 [121,] 0.99435380 1.129240e-02 5.646198e-03 [122,] 0.99440268 1.119464e-02 5.597322e-03 [123,] 0.99511641 9.767179e-03 4.883589e-03 [124,] 0.99404207 1.191587e-02 5.957934e-03 [125,] 0.99048364 1.903272e-02 9.516361e-03 [126,] 0.99634929 7.301419e-03 3.650710e-03 [127,] 0.99387569 1.224863e-02 6.124314e-03 [128,] 0.99718866 5.622686e-03 2.811343e-03 [129,] 0.99993404 1.319291e-04 6.596457e-05 [130,] 0.99985055 2.988922e-04 1.494461e-04 [131,] 0.99999897 2.061444e-06 1.030722e-06 [132,] 0.99999648 7.041966e-06 3.520983e-06 [133,] 0.99998977 2.045234e-05 1.022617e-05 [134,] 0.99999448 1.103195e-05 5.515977e-06 [135,] 0.99999957 8.579617e-07 4.289809e-07 [136,] 0.99999993 1.473384e-07 7.366922e-08 [137,] 0.99999988 2.428798e-07 1.214399e-07 [138,] 0.99999979 4.148129e-07 2.074064e-07 [139,] 0.99999815 3.694609e-06 1.847304e-06 [140,] 0.99999978 4.352294e-07 2.176147e-07 [141,] 0.99999650 7.007051e-06 3.503526e-06 [142,] 0.99994349 1.130288e-04 5.651441e-05 [143,] 0.99929716 1.405673e-03 7.028365e-04 > postscript(file="/var/wessaorg/rcomp/tmp/1dak21323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/285vj1323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/35zet1323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/4woyd1323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/5bipw1323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 164 Frequency = 1 1 2 3 4 5 6 45694.14685 -17294.81421 18734.29254 -56228.75265 9058.93000 -12538.72005 7 8 9 10 11 12 -3255.66073 4017.24542 -11300.60994 18034.72613 7832.13057 2210.60058 13 14 15 16 17 18 -10701.96590 49199.50811 7547.86512 -49920.08009 21940.70913 13511.97240 19 20 21 22 23 24 2670.82414 13343.41080 12504.59960 101178.66212 6008.76629 -28754.05651 25 26 27 28 29 30 -69761.59521 -44152.38941 -34445.76166 19442.85818 -1597.26327 -30171.15258 31 32 33 34 35 36 -26356.97367 -10159.74068 6196.61760 -3860.40579 10885.12942 13795.14048 37 38 39 40 41 42 31944.32377 11999.01498 21305.91750 -10770.23570 -14642.32692 -11783.47543 43 44 45 46 47 48 -19211.23061 18244.89484 -90563.48557 58487.59487 -31064.18991 -7220.72062 49 50 51 52 53 54 -37124.60208 -54515.17766 -19691.45316 -16956.79757 35629.25224 -1968.96658 55 56 57 58 59 60 -9377.42993 8133.76166 6423.12426 -31092.13785 -22493.24726 38039.37197 61 62 63 64 65 66 -4132.63627 -31011.53077 -35860.19269 8670.33761 5830.36751 23320.27672 67 68 69 70 71 72 -6360.73056 -39029.06332 -81.67056 -19117.99863 -5546.64769 -17615.15494 73 74 75 76 77 78 3673.06800 -2152.19302 -17017.19211 75153.19842 11642.72625 -2988.28692 79 80 81 82 83 84 -8464.92334 -4514.80892 -18660.37659 84398.98818 -23339.85327 27863.44549 85 86 87 88 89 90 -17818.66532 -13858.40670 -870.54229 6460.88111 12788.22330 -68813.15221 91 92 93 94 95 96 23019.03706 10580.77250 2332.40139 -306.05760 31360.12188 5905.95159 97 98 99 100 101 102 13453.83432 1414.56290 -19878.57628 14314.25674 18162.79564 -9733.90612 103 104 105 106 107 108 -16289.74261 -13156.47471 461.06607 -31053.13268 -23898.92476 9447.07766 109 110 111 112 113 114 -62813.11095 -29635.40041 45344.80387 59901.01661 1732.38099 -23926.96558 115 116 117 118 119 120 10639.65967 1875.66073 8256.97569 -199.11859 20118.20651 -7099.41699 121 122 123 124 125 126 -33981.17372 28180.26978 41619.30174 -17965.39505 -16439.36229 4836.74677 127 128 129 130 131 132 27373.07840 -9234.75300 -960.03424 -25120.48381 14692.83185 1101.02529 133 134 135 136 137 138 -27627.55779 423.54198 10198.96107 21897.08303 5079.01203 -23594.52908 139 140 141 142 143 144 14165.82545 -11366.69489 33784.65774 20692.52133 1050.34875 43810.47975 145 146 147 148 149 150 24837.05488 -40876.19497 -35842.73111 5504.58191 5187.76982 2167.70755 151 152 153 154 155 156 5093.59914 5259.42845 5186.76982 5186.76982 12880.31983 29745.08375 157 158 159 160 161 162 5186.76982 4625.08709 -1079.22063 -5450.85449 6708.14201 30016.47585 163 164 5773.42845 39357.09857 > postscript(file="/var/wessaorg/rcomp/tmp/6d54a1323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 164 Frequency = 1 lag(myerror, k = 1) myerror 0 45694.14685 NA 1 -17294.81421 45694.14685 2 18734.29254 -17294.81421 3 -56228.75265 18734.29254 4 9058.93000 -56228.75265 5 -12538.72005 9058.93000 6 -3255.66073 -12538.72005 7 4017.24542 -3255.66073 8 -11300.60994 4017.24542 9 18034.72613 -11300.60994 10 7832.13057 18034.72613 11 2210.60058 7832.13057 12 -10701.96590 2210.60058 13 49199.50811 -10701.96590 14 7547.86512 49199.50811 15 -49920.08009 7547.86512 16 21940.70913 -49920.08009 17 13511.97240 21940.70913 18 2670.82414 13511.97240 19 13343.41080 2670.82414 20 12504.59960 13343.41080 21 101178.66212 12504.59960 22 6008.76629 101178.66212 23 -28754.05651 6008.76629 24 -69761.59521 -28754.05651 25 -44152.38941 -69761.59521 26 -34445.76166 -44152.38941 27 19442.85818 -34445.76166 28 -1597.26327 19442.85818 29 -30171.15258 -1597.26327 30 -26356.97367 -30171.15258 31 -10159.74068 -26356.97367 32 6196.61760 -10159.74068 33 -3860.40579 6196.61760 34 10885.12942 -3860.40579 35 13795.14048 10885.12942 36 31944.32377 13795.14048 37 11999.01498 31944.32377 38 21305.91750 11999.01498 39 -10770.23570 21305.91750 40 -14642.32692 -10770.23570 41 -11783.47543 -14642.32692 42 -19211.23061 -11783.47543 43 18244.89484 -19211.23061 44 -90563.48557 18244.89484 45 58487.59487 -90563.48557 46 -31064.18991 58487.59487 47 -7220.72062 -31064.18991 48 -37124.60208 -7220.72062 49 -54515.17766 -37124.60208 50 -19691.45316 -54515.17766 51 -16956.79757 -19691.45316 52 35629.25224 -16956.79757 53 -1968.96658 35629.25224 54 -9377.42993 -1968.96658 55 8133.76166 -9377.42993 56 6423.12426 8133.76166 57 -31092.13785 6423.12426 58 -22493.24726 -31092.13785 59 38039.37197 -22493.24726 60 -4132.63627 38039.37197 61 -31011.53077 -4132.63627 62 -35860.19269 -31011.53077 63 8670.33761 -35860.19269 64 5830.36751 8670.33761 65 23320.27672 5830.36751 66 -6360.73056 23320.27672 67 -39029.06332 -6360.73056 68 -81.67056 -39029.06332 69 -19117.99863 -81.67056 70 -5546.64769 -19117.99863 71 -17615.15494 -5546.64769 72 3673.06800 -17615.15494 73 -2152.19302 3673.06800 74 -17017.19211 -2152.19302 75 75153.19842 -17017.19211 76 11642.72625 75153.19842 77 -2988.28692 11642.72625 78 -8464.92334 -2988.28692 79 -4514.80892 -8464.92334 80 -18660.37659 -4514.80892 81 84398.98818 -18660.37659 82 -23339.85327 84398.98818 83 27863.44549 -23339.85327 84 -17818.66532 27863.44549 85 -13858.40670 -17818.66532 86 -870.54229 -13858.40670 87 6460.88111 -870.54229 88 12788.22330 6460.88111 89 -68813.15221 12788.22330 90 23019.03706 -68813.15221 91 10580.77250 23019.03706 92 2332.40139 10580.77250 93 -306.05760 2332.40139 94 31360.12188 -306.05760 95 5905.95159 31360.12188 96 13453.83432 5905.95159 97 1414.56290 13453.83432 98 -19878.57628 1414.56290 99 14314.25674 -19878.57628 100 18162.79564 14314.25674 101 -9733.90612 18162.79564 102 -16289.74261 -9733.90612 103 -13156.47471 -16289.74261 104 461.06607 -13156.47471 105 -31053.13268 461.06607 106 -23898.92476 -31053.13268 107 9447.07766 -23898.92476 108 -62813.11095 9447.07766 109 -29635.40041 -62813.11095 110 45344.80387 -29635.40041 111 59901.01661 45344.80387 112 1732.38099 59901.01661 113 -23926.96558 1732.38099 114 10639.65967 -23926.96558 115 1875.66073 10639.65967 116 8256.97569 1875.66073 117 -199.11859 8256.97569 118 20118.20651 -199.11859 119 -7099.41699 20118.20651 120 -33981.17372 -7099.41699 121 28180.26978 -33981.17372 122 41619.30174 28180.26978 123 -17965.39505 41619.30174 124 -16439.36229 -17965.39505 125 4836.74677 -16439.36229 126 27373.07840 4836.74677 127 -9234.75300 27373.07840 128 -960.03424 -9234.75300 129 -25120.48381 -960.03424 130 14692.83185 -25120.48381 131 1101.02529 14692.83185 132 -27627.55779 1101.02529 133 423.54198 -27627.55779 134 10198.96107 423.54198 135 21897.08303 10198.96107 136 5079.01203 21897.08303 137 -23594.52908 5079.01203 138 14165.82545 -23594.52908 139 -11366.69489 14165.82545 140 33784.65774 -11366.69489 141 20692.52133 33784.65774 142 1050.34875 20692.52133 143 43810.47975 1050.34875 144 24837.05488 43810.47975 145 -40876.19497 24837.05488 146 -35842.73111 -40876.19497 147 5504.58191 -35842.73111 148 5187.76982 5504.58191 149 2167.70755 5187.76982 150 5093.59914 2167.70755 151 5259.42845 5093.59914 152 5186.76982 5259.42845 153 5186.76982 5186.76982 154 12880.31983 5186.76982 155 29745.08375 12880.31983 156 5186.76982 29745.08375 157 4625.08709 5186.76982 158 -1079.22063 4625.08709 159 -5450.85449 -1079.22063 160 6708.14201 -5450.85449 161 30016.47585 6708.14201 162 5773.42845 30016.47585 163 39357.09857 5773.42845 164 NA 39357.09857 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -17294.81421 45694.14685 [2,] 18734.29254 -17294.81421 [3,] -56228.75265 18734.29254 [4,] 9058.93000 -56228.75265 [5,] -12538.72005 9058.93000 [6,] -3255.66073 -12538.72005 [7,] 4017.24542 -3255.66073 [8,] -11300.60994 4017.24542 [9,] 18034.72613 -11300.60994 [10,] 7832.13057 18034.72613 [11,] 2210.60058 7832.13057 [12,] -10701.96590 2210.60058 [13,] 49199.50811 -10701.96590 [14,] 7547.86512 49199.50811 [15,] -49920.08009 7547.86512 [16,] 21940.70913 -49920.08009 [17,] 13511.97240 21940.70913 [18,] 2670.82414 13511.97240 [19,] 13343.41080 2670.82414 [20,] 12504.59960 13343.41080 [21,] 101178.66212 12504.59960 [22,] 6008.76629 101178.66212 [23,] -28754.05651 6008.76629 [24,] -69761.59521 -28754.05651 [25,] -44152.38941 -69761.59521 [26,] -34445.76166 -44152.38941 [27,] 19442.85818 -34445.76166 [28,] -1597.26327 19442.85818 [29,] -30171.15258 -1597.26327 [30,] -26356.97367 -30171.15258 [31,] -10159.74068 -26356.97367 [32,] 6196.61760 -10159.74068 [33,] -3860.40579 6196.61760 [34,] 10885.12942 -3860.40579 [35,] 13795.14048 10885.12942 [36,] 31944.32377 13795.14048 [37,] 11999.01498 31944.32377 [38,] 21305.91750 11999.01498 [39,] -10770.23570 21305.91750 [40,] -14642.32692 -10770.23570 [41,] -11783.47543 -14642.32692 [42,] -19211.23061 -11783.47543 [43,] 18244.89484 -19211.23061 [44,] -90563.48557 18244.89484 [45,] 58487.59487 -90563.48557 [46,] -31064.18991 58487.59487 [47,] -7220.72062 -31064.18991 [48,] -37124.60208 -7220.72062 [49,] -54515.17766 -37124.60208 [50,] -19691.45316 -54515.17766 [51,] -16956.79757 -19691.45316 [52,] 35629.25224 -16956.79757 [53,] -1968.96658 35629.25224 [54,] -9377.42993 -1968.96658 [55,] 8133.76166 -9377.42993 [56,] 6423.12426 8133.76166 [57,] -31092.13785 6423.12426 [58,] -22493.24726 -31092.13785 [59,] 38039.37197 -22493.24726 [60,] -4132.63627 38039.37197 [61,] -31011.53077 -4132.63627 [62,] -35860.19269 -31011.53077 [63,] 8670.33761 -35860.19269 [64,] 5830.36751 8670.33761 [65,] 23320.27672 5830.36751 [66,] -6360.73056 23320.27672 [67,] -39029.06332 -6360.73056 [68,] -81.67056 -39029.06332 [69,] -19117.99863 -81.67056 [70,] -5546.64769 -19117.99863 [71,] -17615.15494 -5546.64769 [72,] 3673.06800 -17615.15494 [73,] -2152.19302 3673.06800 [74,] -17017.19211 -2152.19302 [75,] 75153.19842 -17017.19211 [76,] 11642.72625 75153.19842 [77,] -2988.28692 11642.72625 [78,] -8464.92334 -2988.28692 [79,] -4514.80892 -8464.92334 [80,] -18660.37659 -4514.80892 [81,] 84398.98818 -18660.37659 [82,] -23339.85327 84398.98818 [83,] 27863.44549 -23339.85327 [84,] -17818.66532 27863.44549 [85,] -13858.40670 -17818.66532 [86,] -870.54229 -13858.40670 [87,] 6460.88111 -870.54229 [88,] 12788.22330 6460.88111 [89,] -68813.15221 12788.22330 [90,] 23019.03706 -68813.15221 [91,] 10580.77250 23019.03706 [92,] 2332.40139 10580.77250 [93,] -306.05760 2332.40139 [94,] 31360.12188 -306.05760 [95,] 5905.95159 31360.12188 [96,] 13453.83432 5905.95159 [97,] 1414.56290 13453.83432 [98,] -19878.57628 1414.56290 [99,] 14314.25674 -19878.57628 [100,] 18162.79564 14314.25674 [101,] -9733.90612 18162.79564 [102,] -16289.74261 -9733.90612 [103,] -13156.47471 -16289.74261 [104,] 461.06607 -13156.47471 [105,] -31053.13268 461.06607 [106,] -23898.92476 -31053.13268 [107,] 9447.07766 -23898.92476 [108,] -62813.11095 9447.07766 [109,] -29635.40041 -62813.11095 [110,] 45344.80387 -29635.40041 [111,] 59901.01661 45344.80387 [112,] 1732.38099 59901.01661 [113,] -23926.96558 1732.38099 [114,] 10639.65967 -23926.96558 [115,] 1875.66073 10639.65967 [116,] 8256.97569 1875.66073 [117,] -199.11859 8256.97569 [118,] 20118.20651 -199.11859 [119,] -7099.41699 20118.20651 [120,] -33981.17372 -7099.41699 [121,] 28180.26978 -33981.17372 [122,] 41619.30174 28180.26978 [123,] -17965.39505 41619.30174 [124,] -16439.36229 -17965.39505 [125,] 4836.74677 -16439.36229 [126,] 27373.07840 4836.74677 [127,] -9234.75300 27373.07840 [128,] -960.03424 -9234.75300 [129,] -25120.48381 -960.03424 [130,] 14692.83185 -25120.48381 [131,] 1101.02529 14692.83185 [132,] -27627.55779 1101.02529 [133,] 423.54198 -27627.55779 [134,] 10198.96107 423.54198 [135,] 21897.08303 10198.96107 [136,] 5079.01203 21897.08303 [137,] -23594.52908 5079.01203 [138,] 14165.82545 -23594.52908 [139,] -11366.69489 14165.82545 [140,] 33784.65774 -11366.69489 [141,] 20692.52133 33784.65774 [142,] 1050.34875 20692.52133 [143,] 43810.47975 1050.34875 [144,] 24837.05488 43810.47975 [145,] -40876.19497 24837.05488 [146,] -35842.73111 -40876.19497 [147,] 5504.58191 -35842.73111 [148,] 5187.76982 5504.58191 [149,] 2167.70755 5187.76982 [150,] 5093.59914 2167.70755 [151,] 5259.42845 5093.59914 [152,] 5186.76982 5259.42845 [153,] 5186.76982 5186.76982 [154,] 12880.31983 5186.76982 [155,] 29745.08375 12880.31983 [156,] 5186.76982 29745.08375 [157,] 4625.08709 5186.76982 [158,] -1079.22063 4625.08709 [159,] -5450.85449 -1079.22063 [160,] 6708.14201 -5450.85449 [161,] 30016.47585 6708.14201 [162,] 5773.42845 30016.47585 [163,] 39357.09857 5773.42845 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -17294.81421 45694.14685 2 18734.29254 -17294.81421 3 -56228.75265 18734.29254 4 9058.93000 -56228.75265 5 -12538.72005 9058.93000 6 -3255.66073 -12538.72005 7 4017.24542 -3255.66073 8 -11300.60994 4017.24542 9 18034.72613 -11300.60994 10 7832.13057 18034.72613 11 2210.60058 7832.13057 12 -10701.96590 2210.60058 13 49199.50811 -10701.96590 14 7547.86512 49199.50811 15 -49920.08009 7547.86512 16 21940.70913 -49920.08009 17 13511.97240 21940.70913 18 2670.82414 13511.97240 19 13343.41080 2670.82414 20 12504.59960 13343.41080 21 101178.66212 12504.59960 22 6008.76629 101178.66212 23 -28754.05651 6008.76629 24 -69761.59521 -28754.05651 25 -44152.38941 -69761.59521 26 -34445.76166 -44152.38941 27 19442.85818 -34445.76166 28 -1597.26327 19442.85818 29 -30171.15258 -1597.26327 30 -26356.97367 -30171.15258 31 -10159.74068 -26356.97367 32 6196.61760 -10159.74068 33 -3860.40579 6196.61760 34 10885.12942 -3860.40579 35 13795.14048 10885.12942 36 31944.32377 13795.14048 37 11999.01498 31944.32377 38 21305.91750 11999.01498 39 -10770.23570 21305.91750 40 -14642.32692 -10770.23570 41 -11783.47543 -14642.32692 42 -19211.23061 -11783.47543 43 18244.89484 -19211.23061 44 -90563.48557 18244.89484 45 58487.59487 -90563.48557 46 -31064.18991 58487.59487 47 -7220.72062 -31064.18991 48 -37124.60208 -7220.72062 49 -54515.17766 -37124.60208 50 -19691.45316 -54515.17766 51 -16956.79757 -19691.45316 52 35629.25224 -16956.79757 53 -1968.96658 35629.25224 54 -9377.42993 -1968.96658 55 8133.76166 -9377.42993 56 6423.12426 8133.76166 57 -31092.13785 6423.12426 58 -22493.24726 -31092.13785 59 38039.37197 -22493.24726 60 -4132.63627 38039.37197 61 -31011.53077 -4132.63627 62 -35860.19269 -31011.53077 63 8670.33761 -35860.19269 64 5830.36751 8670.33761 65 23320.27672 5830.36751 66 -6360.73056 23320.27672 67 -39029.06332 -6360.73056 68 -81.67056 -39029.06332 69 -19117.99863 -81.67056 70 -5546.64769 -19117.99863 71 -17615.15494 -5546.64769 72 3673.06800 -17615.15494 73 -2152.19302 3673.06800 74 -17017.19211 -2152.19302 75 75153.19842 -17017.19211 76 11642.72625 75153.19842 77 -2988.28692 11642.72625 78 -8464.92334 -2988.28692 79 -4514.80892 -8464.92334 80 -18660.37659 -4514.80892 81 84398.98818 -18660.37659 82 -23339.85327 84398.98818 83 27863.44549 -23339.85327 84 -17818.66532 27863.44549 85 -13858.40670 -17818.66532 86 -870.54229 -13858.40670 87 6460.88111 -870.54229 88 12788.22330 6460.88111 89 -68813.15221 12788.22330 90 23019.03706 -68813.15221 91 10580.77250 23019.03706 92 2332.40139 10580.77250 93 -306.05760 2332.40139 94 31360.12188 -306.05760 95 5905.95159 31360.12188 96 13453.83432 5905.95159 97 1414.56290 13453.83432 98 -19878.57628 1414.56290 99 14314.25674 -19878.57628 100 18162.79564 14314.25674 101 -9733.90612 18162.79564 102 -16289.74261 -9733.90612 103 -13156.47471 -16289.74261 104 461.06607 -13156.47471 105 -31053.13268 461.06607 106 -23898.92476 -31053.13268 107 9447.07766 -23898.92476 108 -62813.11095 9447.07766 109 -29635.40041 -62813.11095 110 45344.80387 -29635.40041 111 59901.01661 45344.80387 112 1732.38099 59901.01661 113 -23926.96558 1732.38099 114 10639.65967 -23926.96558 115 1875.66073 10639.65967 116 8256.97569 1875.66073 117 -199.11859 8256.97569 118 20118.20651 -199.11859 119 -7099.41699 20118.20651 120 -33981.17372 -7099.41699 121 28180.26978 -33981.17372 122 41619.30174 28180.26978 123 -17965.39505 41619.30174 124 -16439.36229 -17965.39505 125 4836.74677 -16439.36229 126 27373.07840 4836.74677 127 -9234.75300 27373.07840 128 -960.03424 -9234.75300 129 -25120.48381 -960.03424 130 14692.83185 -25120.48381 131 1101.02529 14692.83185 132 -27627.55779 1101.02529 133 423.54198 -27627.55779 134 10198.96107 423.54198 135 21897.08303 10198.96107 136 5079.01203 21897.08303 137 -23594.52908 5079.01203 138 14165.82545 -23594.52908 139 -11366.69489 14165.82545 140 33784.65774 -11366.69489 141 20692.52133 33784.65774 142 1050.34875 20692.52133 143 43810.47975 1050.34875 144 24837.05488 43810.47975 145 -40876.19497 24837.05488 146 -35842.73111 -40876.19497 147 5504.58191 -35842.73111 148 5187.76982 5504.58191 149 2167.70755 5187.76982 150 5093.59914 2167.70755 151 5259.42845 5093.59914 152 5186.76982 5259.42845 153 5186.76982 5186.76982 154 12880.31983 5186.76982 155 29745.08375 12880.31983 156 5186.76982 29745.08375 157 4625.08709 5186.76982 158 -1079.22063 4625.08709 159 -5450.85449 -1079.22063 160 6708.14201 -5450.85449 161 30016.47585 6708.14201 162 5773.42845 30016.47585 163 39357.09857 5773.42845 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/761t31323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/8o8c11323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/9ix3r1323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/wessaorg/rcomp/tmp/102za81323439346.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/11yp1u1323439346.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/12ez7q1323439346.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/13iwmw1323439346.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/142r681323439346.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/15szbh1323439346.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/168njq1323439346.tab") + } > > try(system("convert tmp/1dak21323439346.ps tmp/1dak21323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/285vj1323439346.ps tmp/285vj1323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/35zet1323439346.ps tmp/35zet1323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/4woyd1323439346.ps tmp/4woyd1323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/5bipw1323439346.ps tmp/5bipw1323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/6d54a1323439346.ps tmp/6d54a1323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/761t31323439346.ps tmp/761t31323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/8o8c11323439346.ps tmp/8o8c11323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/9ix3r1323439346.ps tmp/9ix3r1323439346.png",intern=TRUE)) character(0) > try(system("convert tmp/102za81323439346.ps tmp/102za81323439346.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 5.295 0.597 5.909