R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(194.9,1.79,195.5,1.95,196,2.26,196.2,2.04,196.2,2.16,196.2,2.75,196.2,2.79,197,2.88,197.7,3.36,198,2.97,198.2,3.1,198.5,2.49,198.6,2.2,199.5,2.25,200,2.09,201.3,2.79,202.2,3.14,202.9,2.93,203.5,2.65,203.5,2.67,204,2.26,204.1,2.35,204.3,2.13,204.5,2.18,204.8,2.9,205.1,2.63,205.7,2.67,206.5,1.81,206.9,1.33,207.1,0.88,207.8,1.28,208,1.26,208.5,1.26,208.6,1.29,209,1.1,209.1,1.37,209.7,1.21,209.8,1.74,209.9,1.76,210,1.48,210.8,1.04,211.4,1.62,211.7,1.49,212,1.79,212.2,1.8,212.4,1.58,212.9,1.86,213.4,1.74,213.7,1.59,214,1.26,214.3,1.13,214.8,1.92,215,2.61,215.9,2.26,216.4,2.41,216.9,2.26,217.2,2.03,217.5,2.86,217.9,2.55,218.1,2.27,218.6,2.26,218.9,2.57,219.3,3.07,220.4,2.76,220.9,2.51,221,2.87,221.8,3.14,222,3.11,222.2,3.16,222.5,2.47,222.9,2.57,223.1,2.89),dim=c(2,72),dimnames=list(c('Uurloon','Inflatie'),1:72)) > y <- array(NA,dim=c(2,72),dimnames=list(c('Uurloon','Inflatie'),1:72)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par4 = 'yes' > par3 = '2' > par2 = 'quantiles' > par1 = '1' > library(party) Loading required package: survival Loading required package: splines Loading required package: grid Loading required package: modeltools Loading required package: stats4 Loading required package: coin Loading required package: mvtnorm Loading required package: zoo Loading required package: sandwich Loading required package: strucchange Loading required package: vcd Loading required package: MASS Loading required package: colorspace > library(Hmisc) Attaching package: 'Hmisc' The following object(s) are masked from 'package:survival': untangle.specials The following object(s) are masked from 'package:base': format.pval, round.POSIXt, trunc.POSIXt, units > par1 <- as.numeric(par1) > par3 <- as.numeric(par3) > x <- data.frame(t(y)) > is.data.frame(x) [1] TRUE > x <- x[!is.na(x[,par1]),] > k <- length(x[1,]) > n <- length(x[,1]) > colnames(x)[par1] [1] "Uurloon" > x[,par1] [1] 194.9 195.5 196.0 196.2 196.2 196.2 196.2 197.0 197.7 198.0 198.2 198.5 [13] 198.6 199.5 200.0 201.3 202.2 202.9 203.5 203.5 204.0 204.1 204.3 204.5 [25] 204.8 205.1 205.7 206.5 206.9 207.1 207.8 208.0 208.5 208.6 209.0 209.1 [37] 209.7 209.8 209.9 210.0 210.8 211.4 211.7 212.0 212.2 212.4 212.9 213.4 [49] 213.7 214.0 214.3 214.8 215.0 215.9 216.4 216.9 217.2 217.5 217.9 218.1 [61] 218.6 218.9 219.3 220.4 220.9 221.0 221.8 222.0 222.2 222.5 222.9 223.1 > if (par2 == 'kmeans') { + cl <- kmeans(x[,par1], par3) + print(cl) + clm <- matrix(cbind(cl$centers,1:par3),ncol=2) + clm <- clm[sort.list(clm[,1]),] + for (i in 1:par3) { + cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='') + } + cl$cluster <- as.factor(cl$cluster) + print(cl$cluster) + x[,par1] <- cl$cluster + } > if (par2 == 'quantiles') { + x[,par1] <- cut2(x[,par1],g=par3) + } > if (par2 == 'hclust') { + hc <- hclust(dist(x[,par1])^2, 'cen') + print(hc) + memb <- cutree(hc, k = par3) + dum <- c(mean(x[memb==1,par1])) + for (i in 2:par3) { + dum <- c(dum, mean(x[memb==i,par1])) + } + hcm <- matrix(cbind(dum,1:par3),ncol=2) + hcm <- hcm[sort.list(hcm[,1]),] + for (i in 1:par3) { + memb[memb==hcm[i,2]] <- paste('C',i,sep='') + } + memb <- as.factor(memb) + print(memb) + x[,par1] <- memb + } > if (par2=='equal') { + ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep='')) + x[,par1] <- as.factor(ed) + } > table(x[,par1]) [195,210) [210,223] 36 36 > colnames(x) [1] "Uurloon" "Inflatie" > colnames(x)[par1] [1] "Uurloon" > x[,par1] [1] [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [8] [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [15] [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [22] [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [29] [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [195,210) [36] [195,210) [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [43] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [50] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [57] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [64] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [210,223] [71] [210,223] [210,223] Levels: [195,210) [210,223] > if (par2 == 'none') { + m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x) + } > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > if (par2 != 'none') { + m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x) + if (par4=='yes') { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'',1,TRUE) + a<-table.element(a,'Prediction (training)',par3+1,TRUE) + a<-table.element(a,'Prediction (testing)',par3+1,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Actual',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) + a<-table.element(a,'CV',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) + a<-table.element(a,'CV',1,TRUE) + a<-table.row.end(a) + for (i in 1:10) { + ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1)) + m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,]) + if (i==1) { + m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,]) + m.ct.i.actu <- x[ind==1,par1] + m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,]) + m.ct.x.actu <- x[ind==2,par1] + } else { + m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,])) + m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1]) + m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,])) + m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1]) + } + } + print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred)) + numer <- 0 + for (i in 1:par3) { + print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,])) + numer <- numer + m.ct.i.tab[i,i] + } + print(m.ct.i.cp <- numer / sum(m.ct.i.tab)) + print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred)) + numer <- 0 + for (i in 1:par3) { + print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,])) + numer <- numer + m.ct.x.tab[i,i] + } + print(m.ct.x.cp <- numer / sum(m.ct.x.tab)) + for (i in 1:par3) { + a<-table.row.start(a) + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj]) + a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4)) + for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj]) + a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4)) + a<-table.row.end(a) + } + a<-table.row.start(a) + a<-table.element(a,'Overall',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,'-') + a<-table.element(a,round(m.ct.i.cp,4)) + for (jjj in 1:par3) a<-table.element(a,'-') + a<-table.element(a,round(m.ct.x.cp,4)) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/1859j1323793157.tab") + } + } m.ct.i.pred m.ct.i.actu 1 2 1 167 158 2 157 169 [1] 0.5138462 [1] 0.5184049 [1] 0.516129 m.ct.x.pred m.ct.x.actu 1 2 1 13 22 2 23 11 [1] 0.3714286 [1] 0.3235294 [1] 0.3478261 > m Conditional inference tree with 1 terminal nodes Response: as.factor(Uurloon) Input: Inflatie Number of observations: 72 1)* weights = 72 > postscript(file="/var/wessaorg/rcomp/tmp/2okwy1323793157.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(m) > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/3kmmf1323793157.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response') > dev.off() null device 1 > if (par2 == 'none') { + forec <- predict(m) + result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec)) + colnames(result) <- c('Actuals','Forecasts','Residuals') + print(result) + } > if (par2 != 'none') { + print(cbind(as.factor(x[,par1]),predict(m))) + myt <- table(as.factor(x[,par1]),predict(m)) + print(myt) + } [,1] [,2] [1,] 1 1 [2,] 1 1 [3,] 1 1 [4,] 1 1 [5,] 1 1 [6,] 1 1 [7,] 1 1 [8,] 1 1 [9,] 1 1 [10,] 1 1 [11,] 1 1 [12,] 1 1 [13,] 1 1 [14,] 1 1 [15,] 1 1 [16,] 1 1 [17,] 1 1 [18,] 1 1 [19,] 1 1 [20,] 1 1 [21,] 1 1 [22,] 1 1 [23,] 1 1 [24,] 1 1 [25,] 1 1 [26,] 1 1 [27,] 1 1 [28,] 1 1 [29,] 1 1 [30,] 1 1 [31,] 1 1 [32,] 1 1 [33,] 1 1 [34,] 1 1 [35,] 1 1 [36,] 1 1 [37,] 2 1 [38,] 2 1 [39,] 2 1 [40,] 2 1 [41,] 2 1 [42,] 2 1 [43,] 2 1 [44,] 2 1 [45,] 2 1 [46,] 2 1 [47,] 2 1 [48,] 2 1 [49,] 2 1 [50,] 2 1 [51,] 2 1 [52,] 2 1 [53,] 2 1 [54,] 2 1 [55,] 2 1 [56,] 2 1 [57,] 2 1 [58,] 2 1 [59,] 2 1 [60,] 2 1 [61,] 2 1 [62,] 2 1 [63,] 2 1 [64,] 2 1 [65,] 2 1 [66,] 2 1 [67,] 2 1 [68,] 2 1 [69,] 2 1 [70,] 2 1 [71,] 2 1 [72,] 2 1 [195,210) [210,223] [195,210) 36 0 [210,223] 36 0 > postscript(file="/var/wessaorg/rcomp/tmp/4bsff1323793157.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > if(par2=='none') { + op <- par(mfrow=c(2,2)) + plot(density(result$Actuals),main='Kernel Density Plot of Actuals') + plot(density(result$Residuals),main='Kernel Density Plot of Residuals') + plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals') + plot(density(result$Forecasts),main='Kernel Density Plot of Predictions') + par(op) + } > if(par2!='none') { + plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted') + } > dev.off() null device 1 > if (par2 == 'none') { + detcoef <- cor(result$Forecasts,result$Actuals) + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goodness of Fit',2,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Correlation',1,TRUE) + a<-table.element(a,round(detcoef,4)) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'R-squared',1,TRUE) + a<-table.element(a,round(detcoef*detcoef,4)) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'RMSE',1,TRUE) + a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4)) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/5k10q1323793157.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'#',header=TRUE) + a<-table.element(a,'Actuals',header=TRUE) + a<-table.element(a,'Forecasts',header=TRUE) + a<-table.element(a,'Residuals',header=TRUE) + a<-table.row.end(a) + for (i in 1:length(result$Actuals)) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,result$Actuals[i]) + a<-table.element(a,result$Forecasts[i]) + a<-table.element(a,result$Residuals[i]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/6vlxn1323793157.tab") + } > if (par2 != 'none') { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'',1,TRUE) + for (i in 1:par3) { + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + } + a<-table.row.end(a) + for (i in 1:par3) { + a<-table.row.start(a) + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + for (j in 1:par3) { + a<-table.element(a,myt[i,j]) + } + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/7yn0k1323793157.tab") + } > > try(system("convert tmp/2okwy1323793157.ps tmp/2okwy1323793157.png",intern=TRUE)) character(0) > try(system("convert tmp/3kmmf1323793157.ps tmp/3kmmf1323793157.png",intern=TRUE)) character(0) > try(system("convert tmp/4bsff1323793157.ps tmp/4bsff1323793157.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.217 0.323 3.966