R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(58.58527778 + ,145 + ,30 + ,94 + ,112285 + ,14.36009776 + ,1 + ,33.60611111 + ,101 + ,28 + ,103 + ,84786 + ,11.30900293 + ,1 + ,49.03 + ,98 + ,38 + ,93 + ,83123 + ,12.45810893 + ,1 + ,49.81138889 + ,132 + ,30 + ,103 + ,101193 + ,13.50394283 + ,1 + ,34.21805556 + ,60 + ,22 + ,51 + ,38361 + ,7.219358341 + ,1 + ,14.65166667 + ,38 + ,26 + ,70 + ,68504 + ,7.381367182 + ,1 + ,107.0927778 + ,144 + ,25 + ,91 + ,119182 + ,15.26096233 + ,1 + ,9.213888889 + ,5 + ,18 + ,22 + ,22807 + ,3.165415029 + ,1 + ,41.40583333 + ,84 + ,26 + ,93 + ,116174 + ,11.78143911 + ,1 + ,45.95722222 + ,79 + ,25 + ,60 + ,57635 + ,9.277808364 + ,1 + ,65.8925 + ,127 + ,38 + ,123 + ,66198 + ,14.22780485 + ,1 + ,48.14611111 + ,78 + ,44 + ,148 + ,71701 + ,13.3753608 + ,1 + ,36.98083333 + ,60 + ,30 + ,90 + ,57793 + ,9.487750499 + ,1 + ,71.90916667 + ,131 + ,40 + ,124 + ,80444 + ,15.21511671 + ,1 + ,50.02305556 + ,84 + ,34 + ,70 + ,53855 + ,10.42712012 + ,1 + ,90.22194444 + ,133 + ,47 + ,168 + ,97668 + ,17.84978648 + ,1 + ,64.15666667 + ,150 + ,30 + ,115 + ,133824 + ,15.89534882 + ,1 + ,65.77361111 + ,91 + ,31 + ,71 + ,101481 + ,12.55115438 + ,1 + ,37.63138889 + ,132 + ,23 + ,66 + ,99645 + ,11.43396085 + ,1 + ,56.36805556 + ,136 + ,36 + ,134 + ,114789 + ,15.53507626 + ,1 + ,59.76305556 + ,124 + ,36 + ,117 + ,99052 + ,14.52239325 + ,1 + ,95.63805556 + ,118 + ,30 + ,108 + ,67654 + ,13.89331579 + ,1 + ,42.75972222 + ,70 + ,25 + ,84 + ,65553 + ,9.712278591 + ,1 + ,36.92861111 + ,107 + ,39 + ,156 + ,97500 + ,14.12942504 + ,1 + ,48.53444444 + ,119 + ,34 + ,120 + ,69112 + ,12.89537363 + ,1 + ,48.44861111 + ,89 + ,31 + ,114 + ,82753 + ,12.1602659 + ,1 + ,62.65222222 + ,112 + ,31 + ,94 + ,85323 + ,13.01181689 + ,1 + ,62.12 + ,108 + ,33 + ,120 + ,72654 + ,13.29873685 + ,1 + ,34.67138889 + ,52 + ,25 + ,81 + ,30727 + ,7.775415068 + ,1 + ,61.58277778 + ,112 + ,33 + ,110 + ,77873 + ,13.28429728 + ,1 + ,58.54638889 + ,116 + ,35 + ,133 + ,117478 + ,15.11451039 + ,1 + ,47.29611111 + ,123 + ,42 + ,122 + ,74007 + ,13.74797244 + ,1 + ,72.37805556 + ,125 + ,43 + ,158 + ,90183 + ,16.42942616 + ,1 + ,23.57027778 + ,27 + ,30 + ,109 + ,61542 + ,8.584377305 + ,1 + ,81.78444444 + ,162 + ,33 + ,124 + ,101494 + ,16.47410685 + ,1 + ,59.90027778 + ,64 + ,32 + ,92 + ,55813 + ,10.83539947 + ,1 + ,90.3075 + ,92 + ,36 + ,126 + ,79215 + ,14.48035784 + ,1 + ,46.53944444 + ,83 + ,28 + ,70 + ,55461 + ,9.817153316 + ,1 + ,29.55777778 + ,41 + ,14 + ,37 + ,31081 + ,5.345232896 + ,1 + ,73.82472222 + ,120 + ,32 + ,120 + ,83122 + ,14.39310875 + ,1 + ,74.90305556 + ,105 + ,30 + ,93 + ,70106 + ,12.87630593 + ,1 + ,41.42 + ,79 + ,35 + ,95 + ,60578 + ,10.76877965 + ,1 + ,42.46416667 + ,70 + ,28 + ,90 + ,79892 + ,10.49694082 + ,1 + ,31.01805556 + ,55 + ,28 + ,80 + ,49810 + ,8.443671407 + ,1 + ,32.33555556 + ,39 + ,39 + ,31 + ,71570 + ,8.407782836 + ,1 + ,100.6391667 + ,67 + ,34 + ,110 + ,100708 + ,13.94065255 + ,1 + ,21.88888889 + ,21 + ,26 + ,66 + ,33032 + ,6.16326461 + ,1 + ,50.87972222 + ,127 + ,39 + ,138 + ,82875 + ,14.43688293 + ,1 + ,77.2125 + ,152 + ,39 + ,133 + ,139077 + ,17.77583855 + ,1 + ,41.84138889 + ,113 + ,33 + ,113 + ,71595 + ,12.2486023 + ,1 + ,46.89138889 + ,99 + ,28 + ,100 + ,72260 + ,11.45685566 + ,1 + ,6.718888889 + ,7 + ,4 + ,7 + ,5950 + ,1.153093302 + ,1 + ,91.46305556 + ,141 + ,39 + ,140 + ,115762 + ,17.35686844 + ,1 + ,18.06361111 + ,21 + ,18 + ,61 + ,32551 + ,5.224652076 + ,1 + ,28.0825 + ,35 + ,14 + ,41 + ,31701 + ,5.238696901 + ,1 + ,60.81833333 + ,109 + ,29 + ,96 + ,80670 + ,12.60523152 + ,1 + ,67.79222222 + ,133 + ,44 + ,164 + ,143558 + ,17.98404039 + ,1 + ,64.81333333 + ,230 + ,28 + ,102 + ,120733 + ,15.30279334 + ,1 + ,71.23944444 + ,166 + ,35 + ,124 + ,105195 + ,16.2306506 + ,1 + ,57.26694444 + ,68 + ,28 + ,99 + ,73107 + ,11.17728596 + ,1 + ,86.52027778 + ,147 + ,38 + ,129 + ,132068 + ,17.64250157 + ,1 + ,65.5 + ,179 + ,23 + ,62 + ,149193 + ,14.43288916 + ,1 + ,49.4275 + ,61 + ,36 + ,73 + ,46821 + ,9.841441509 + ,1 + ,57.54888889 + ,101 + ,32 + ,114 + ,87011 + ,13.10185804 + ,1 + ,54.59805556 + ,108 + ,29 + ,99 + ,95260 + ,12.78229154 + ,1 + ,48.38444444 + ,90 + ,25 + ,70 + ,55183 + ,9.841353028 + ,1 + ,39.79055556 + ,114 + ,27 + ,104 + ,106671 + ,12.52267132 + ,1 + ,52.09972222 + ,103 + ,36 + ,116 + ,73511 + ,12.85177133 + ,1 + ,52.13361111 + ,142 + ,28 + ,91 + ,92945 + ,13.17889823 + ,1 + ,33.06 + ,79 + ,23 + ,74 + ,78664 + ,9.459926349 + ,1 + ,50.60888889 + ,88 + ,40 + ,138 + ,70054 + ,13.14460233 + ,1 + ,20.435 + ,25 + ,23 + ,67 + ,22618 + ,5.679993974 + ,1 + ,54.16083333 + ,83 + ,40 + ,151 + ,74011 + ,13.621099 + ,1 + ,46.52444444 + ,113 + ,28 + ,72 + ,83737 + ,11.4493559 + ,1 + ,39.93222222 + ,118 + ,34 + ,120 + ,69094 + ,12.45612266 + ,1 + ,76.53916667 + ,110 + ,33 + ,115 + ,93133 + ,14.52255588 + ,1 + ,67.55527778 + ,129 + ,28 + ,105 + ,95536 + ,14.00916003 + ,1 + ,50.83305556 + ,51 + ,34 + ,104 + ,225920 + ,12.87917848 + ,1 + ,37.68027778 + ,93 + ,30 + ,108 + ,62133 + ,10.91453539 + ,1 + ,42.30527778 + ,76 + ,33 + ,98 + ,61370 + ,10.67710167 + ,1 + ,33.39472222 + ,49 + ,22 + ,69 + ,43836 + ,7.500506329 + ,1 + ,96.24583333 + ,118 + ,38 + ,111 + ,106117 + ,15.71511893 + ,1 + ,40.49722222 + ,38 + ,26 + ,99 + ,38692 + ,8.451414364 + ,1 + ,53.70527778 + ,141 + ,35 + ,71 + ,84651 + ,13.04281114 + ,1 + ,22.48694444 + ,58 + ,8 + ,27 + ,56622 + ,5.475735648 + ,1 + ,34.10388889 + ,27 + ,24 + ,69 + ,15986 + ,6.318561991 + ,1 + ,36.27361111 + ,91 + ,29 + ,107 + ,95364 + ,11.67102852 + ,1 + ,79.57444444 + ,63 + ,29 + ,107 + ,89691 + ,12.88262502 + ,1 + ,66.96277778 + ,56 + ,45 + ,93 + ,67267 + ,12.34103121 + ,1 + ,41.235 + ,144 + ,37 + ,129 + ,126846 + ,15.31887313 + ,1 + ,56.86472222 + ,73 + ,33 + ,69 + ,41140 + ,10.00450285 + ,1 + ,50.5775 + ,168 + ,33 + ,118 + ,102860 + ,14.86835659 + ,1 + ,38.98444444 + ,64 + ,25 + ,73 + ,51715 + ,8.706868119 + ,1 + ,61.25444444 + ,97 + ,32 + ,119 + ,55801 + ,12.38401963 + ,1 + ,67.51666667 + ,117 + ,29 + ,104 + ,111813 + ,14.23699191 + ,1 + ,45.2125 + ,100 + ,28 + ,107 + ,120293 + ,12.98177075 + ,1 + ,50.72583333 + ,149 + ,28 + ,99 + ,138599 + ,14.75112225 + ,1 + ,64.48277778 + ,187 + ,31 + ,90 + ,161647 + ,15.68212424 + ,1 + ,73.69944444 + ,127 + ,52 + ,197 + ,115929 + ,18.1400865 + ,1 + ,86.34416667 + ,245 + ,24 + ,85 + ,162901 + ,15.91867058 + ,1 + ,62.51666667 + ,87 + ,41 + ,139 + ,109825 + ,14.96179352 + ,1 + ,64.5325 + ,177 + ,33 + ,106 + ,129838 + ,16.04078615 + ,1 + ,40.26833333 + ,49 + ,32 + ,50 + ,37510 + ,7.958769343 + ,1 + ,12.02416667 + ,49 + ,19 + ,64 + ,43750 + ,6.117022453 + ,1 + ,43.265 + ,73 + ,20 + ,31 + ,40652 + ,7.408636579 + ,1 + ,45.7525 + ,177 + ,31 + ,63 + ,87771 + ,12.70501195 + ,1 + ,56.09444444 + ,94 + ,31 + ,92 + ,85872 + ,12.21180573 + ,1 + ,65.40388889 + ,117 + ,32 + ,106 + ,89275 + ,13.7541755 + ,1 + ,27.62944444 + ,55 + ,23 + ,69 + ,192565 + ,10.16398398 + ,1 + ,27.98611111 + ,58 + ,30 + ,93 + ,140867 + ,11.38027871 + ,1 + ,62.37472222 + ,95 + ,31 + ,114 + ,120662 + ,14.09406222 + ,1 + ,67.64194444 + ,129 + ,42 + ,110 + ,101338 + ,15.38882422 + ,1 + ,6.371666667 + ,11 + ,1 + ,0 + ,1168 + ,0.694512385 + ,1 + ,42.35388889 + ,101 + ,32 + ,83 + ,65567 + ,10.98992814 + ,1 + ,17.1825 + ,28 + ,11 + ,30 + ,25162 + ,3.847727223 + ,1 + ,36.80194444 + ,89 + ,36 + ,98 + ,40735 + ,10.36537965 + ,1 + ,88.165 + ,193 + ,31 + ,82 + ,91413 + ,15.07282766 + ,1 + ,5.848333333 + ,4 + ,0 + ,0 + ,855 + ,0.406821823 + ,1 + ,58.23361111 + ,84 + ,24 + ,60 + ,97068 + ,11.07449882 + ,1 + ,8.726111111 + ,39 + ,8 + ,9 + ,14116 + ,2.651799226 + ,1 + ,67.98583333 + ,101 + ,33 + ,115 + ,76643 + ,13.40079885 + ,1 + ,51.25277778 + ,82 + ,40 + ,140 + ,110681 + ,14.266541 + ,1 + ,35.67305556 + ,36 + ,38 + ,120 + ,92696 + ,11.1935173 + ,1 + ,27.1775 + ,75 + ,24 + ,66 + ,94785 + ,9.43355457 + ,1 + ,10.615 + ,16 + ,8 + ,21 + ,8773 + ,2.298582242 + ,1 + ,41.9725 + ,55 + ,35 + ,124 + ,83209 + ,11.55994194 + ,1 + ,75.68277778 + ,131 + ,43 + ,152 + ,93815 + ,16.70032444 + ,1 + ,47.915 + ,131 + ,43 + ,139 + ,86687 + ,14.84074833 + ,1 + ,91.14083333 + ,144 + ,41 + ,144 + ,105547 + ,17.38403831 + ,1 + ,69.60527778 + ,139 + ,38 + ,120 + ,103487 + ,15.73039586 + ,1 + ,97.51861111 + ,211 + ,45 + ,160 + ,213688 + ,19.36265885 + ,1 + ,43.89305556 + ,78 + ,31 + ,114 + ,71220 + ,11.32605381 + ,1 + ,23.73305556 + ,39 + ,28 + ,78 + ,56926 + ,7.851840967 + ,1 + ,63.67833333 + ,90 + ,31 + ,119 + ,91721 + ,13.30225262 + ,1 + ,97.67194444 + ,166 + ,40 + ,141 + ,115168 + ,17.89762797 + ,1 + ,23.39083333 + ,12 + ,30 + ,101 + ,111194 + ,9.46320715 + ,1 + ,90.16611111 + ,133 + ,37 + ,133 + ,135777 + ,17.41915883 + ,1 + ,36.40805556 + ,69 + ,30 + ,83 + ,51513 + ,9.332238773 + ,1 + ,56.74194444 + ,119 + ,35 + ,116 + ,74163 + ,13.4187927 + ,1 + ,45.98416667 + ,119 + ,32 + ,90 + ,51633 + ,11.37725913 + ,1 + ,39.36722222 + ,65 + ,27 + ,36 + ,75345 + ,8.702323456 + ,1 + ,83.27083333 + ,101 + ,31 + ,97 + ,98952 + ,14.19611665 + ,1 + ,54.39944444 + ,196 + ,31 + ,98 + ,102372 + ,14.3980936 + ,1 + ,48.12777778 + ,15 + ,21 + ,78 + ,37238 + ,7.301383906 + ,1 + ,70.69111111 + ,136 + ,39 + ,117 + ,103772 + ,15.72027262 + ,1 + ,28.99694444 + ,89 + ,41 + ,148 + ,123969 + ,14.03405468 + ,1 + ,55.41 + ,123 + ,32 + ,105 + ,135400 + ,14.75498272 + ,1 + ,62.31388889 + ,163 + ,39 + ,132 + ,130115 + ,17.03707132 + ,1 + ,4.08 + ,5 + ,0 + ,0 + ,6023 + ,0.498724543 + ,1 + ,50.45361111 + ,96 + ,30 + ,73 + ,64466 + ,10.82410397 + ,1 + ,75.51555556 + ,151 + ,37 + ,86 + ,54990 + ,13.99003257 + ,1 + ,1.999722222 + ,6 + ,0 + ,0 + ,1644 + ,0.295218143 + ,1 + ,12.96111111 + ,13 + ,5 + ,13 + ,6179 + ,1.833602184 + ,1 + ,4.874166667 + ,3 + ,1 + ,4 + ,3926 + ,0.59944272 + ,1 + ,26.45194444 + ,23 + ,32 + ,48 + ,34777 + ,6.512322257 + ,1 + ,42.38916667 + ,57 + ,24 + ,46 + ,73224 + ,8.594439161 + ,1 + ,28.23472222 + ,28 + ,11 + ,38 + ,17140 + ,10.17463007 + ,0 + ,28.05861111 + ,32 + ,13 + ,39 + ,27570 + ,11.70685947 + ,0 + ,1.993333333 + ,0 + ,0 + ,0 + ,1423 + ,0.336629956 + ,0 + ,26.82222222 + ,47 + ,17 + ,38 + ,22996 + ,12.81545815 + ,0 + ,48.84 + ,65 + ,20 + ,77 + ,39992 + ,18.48134929 + ,0 + ,94.88055556 + ,123 + ,21 + ,78 + ,117105 + ,19.15 + ,0 + ,28.77694444 + ,26 + ,16 + ,49 + ,23789 + ,11.98976509 + ,0 + ,31.28083333 + ,48 + ,20 + ,73 + ,26706 + ,15.96311694 + ,0 + ,23.77055556 + ,37 + ,21 + ,36 + ,24266 + ,12.36867636 + ,0 + ,61.33361111 + ,60 + ,18 + ,63 + ,44418 + ,17.85359417 + ,0 + ,25.73916667 + ,39 + ,17 + ,41 + ,35232 + ,13.33972078 + ,0 + ,37.03555556 + ,64 + ,20 + ,56 + ,40909 + ,17.43586247 + ,0 + ,17.04472222 + ,26 + ,12 + ,25 + ,13294 + ,7.971763963 + ,0 + ,34.98055556 + ,64 + ,17 + ,65 + ,32387 + ,16.49423975 + ,0 + ,22.86555556 + ,25 + ,10 + ,38 + ,21233 + ,9.589676646 + ,0 + ,28.33611111 + ,26 + ,13 + ,44 + ,44332 + ,13.0201353 + ,0 + ,28.20083333 + ,76 + ,22 + ,87 + ,61056 + ,18.30998406 + ,0 + ,11.54611111 + ,2 + ,9 + ,27 + ,13497 + ,5.311440585 + ,0 + ,27.75638889 + ,36 + ,25 + ,80 + ,32334 + ,16.14544025 + ,0 + ,6.291111111 + ,23 + ,13 + ,28 + ,44339 + ,9.61483208 + ,0 + ,12.97166667 + ,14 + ,13 + ,33 + ,10288 + ,6.97001928 + ,0 + ,36.58277778 + ,78 + ,19 + ,59 + ,65622 + ,17.8328823 + ,0 + ,25.48194444 + ,14 + ,18 + ,49 + ,16563 + ,10.43631816 + ,0 + ,22.18416667 + ,24 + ,22 + ,49 + ,29011 + ,12.49521893 + ,0 + ,30.01194444 + ,39 + ,14 + ,38 + ,34553 + ,13.13014142 + ,0 + ,27.46277778 + ,50 + ,13 + ,39 + ,23517 + ,12.5995365 + ,0 + ,33.45694444 + ,57 + ,16 + ,56 + ,51009 + ,16.89272827 + ,0 + ,32.23555556 + ,61 + ,20 + ,50 + ,33416 + ,15.95822221 + ,0 + ,69.4575 + ,49 + ,18 + ,61 + ,83305 + ,17.44624506 + ,0 + ,37.80111111 + ,40 + ,13 + ,41 + ,27142 + ,13.36096345 + ,0 + ,25.69416667 + ,21 + ,18 + ,55 + ,21399 + ,11.70208318 + ,0 + ,37.71694444 + ,29 + ,14 + ,44 + ,24874 + ,12.6700532 + ,0 + ,20.66888889 + ,35 + ,7 + ,21 + ,34988 + ,9.942922584 + ,0 + ,22.56666667 + ,13 + ,17 + ,50 + ,45549 + ,12.47787034 + ,0 + ,37.04666667 + ,56 + ,16 + ,57 + ,32755 + ,16.1794073 + ,0 + ,27.26277778 + ,14 + ,17 + ,48 + ,27114 + ,11.34269609 + ,0 + ,22.11638889 + ,43 + ,11 + ,32 + ,20760 + ,10.61458743 + ,0 + ,16.44277778 + ,20 + ,24 + ,68 + ,37636 + ,13.63362964 + ,0 + ,38.87277778 + ,72 + ,22 + ,87 + ,65461 + ,19.3 + ,0 + ,32.94777778 + ,87 + ,12 + ,43 + ,30080 + ,14.17862044 + ,0 + ,20.24444444 + ,21 + ,19 + ,67 + ,24094 + ,12.13110302 + ,0 + ,18.1875 + ,56 + ,13 + ,46 + ,69008 + ,14.29122225 + ,0 + ,27.67861111 + ,59 + ,17 + ,46 + ,54968 + ,15.90424527 + ,0 + ,19.99027778 + ,82 + ,15 + ,56 + ,46090 + ,15.30537883 + ,0 + ,21.46444444 + ,43 + ,16 + ,48 + ,27507 + ,12.71711954 + ,0 + ,13.69138889 + ,25 + ,24 + ,44 + ,10672 + ,10.1041787 + ,0 + ,37.53638889 + ,38 + ,15 + ,60 + ,34029 + ,15.10633448 + ,0 + ,30.12388889 + ,25 + ,17 + ,65 + ,46300 + ,14.97472539 + ,0 + ,24.92944444 + ,38 + ,18 + ,55 + ,24760 + ,13.14940394 + ,0 + ,12.30444444 + ,12 + ,20 + ,38 + ,18779 + ,8.803370342 + ,0 + ,21.56888889 + ,29 + ,16 + ,52 + ,21280 + ,11.37671367 + ,0 + ,50.42444444 + ,47 + ,16 + ,60 + ,40662 + ,16.48829016 + ,0 + ,37.2275 + ,45 + ,18 + ,54 + ,28987 + ,15.28690517 + ,0 + ,34.46222222 + ,40 + ,22 + ,86 + ,22827 + ,15.87449367 + ,0 + ,25.73055556 + ,30 + ,8 + ,24 + ,18513 + ,8.991891655 + ,0 + ,33.84666667 + ,41 + ,17 + ,52 + ,30594 + ,14.52069002 + ,0 + ,14.69861111 + ,25 + ,18 + ,49 + ,24006 + ,10.73329293 + ,0 + ,22.74222222 + ,23 + ,16 + ,61 + ,27913 + ,12.11255989 + ,0 + ,16.38361111 + ,14 + ,23 + ,61 + ,42744 + ,13.12039076 + ,0 + ,14.86527778 + ,16 + ,22 + ,81 + ,12934 + ,11.17618446 + ,0 + ,16.89222222 + ,26 + ,13 + ,43 + ,22574 + ,9.852452086 + ,0 + ,15.65972222 + ,21 + ,13 + ,40 + ,41385 + ,10.83826353 + ,0 + ,18.19166667 + ,27 + ,16 + ,40 + ,18653 + ,10.01602482 + ,0 + ,22.48583333 + ,9 + ,16 + ,56 + ,18472 + ,9.98429329 + ,0 + ,21.195 + ,33 + ,20 + ,68 + ,30976 + ,13.90654664 + ,0 + ,28.89194444 + ,42 + ,22 + ,79 + ,63339 + ,17.43829448 + ,0 + ,27.25111111 + ,68 + ,17 + ,47 + ,25568 + ,14.13651406 + ,0 + ,18.88583333 + ,32 + ,18 + ,57 + ,33747 + ,12.95465875 + ,0 + ,8.608055556 + ,6 + ,17 + ,41 + ,4154 + ,6.405875596 + ,0 + ,37.62722222 + ,67 + ,12 + ,29 + ,19474 + ,13.00827743 + ,0 + ,20.41777778 + ,33 + ,7 + ,3 + ,35130 + ,8.843896805 + ,0 + ,17.53416667 + ,77 + ,17 + ,60 + ,39067 + ,14.95275123 + ,0 + ,17.015 + ,46 + ,14 + ,30 + ,13310 + ,9.985399433 + ,0 + ,20.80944444 + ,30 + ,23 + ,79 + ,65892 + ,15.85289071 + ,0 + ,8.826111111 + ,0 + ,17 + ,47 + ,4143 + ,6.304871788 + ,0 + ,22.62138889 + ,36 + ,14 + ,40 + ,28579 + ,11.70744131 + ,0 + ,24.21833333 + ,46 + ,15 + ,48 + ,51776 + ,14.6847188 + ,0 + ,13.91388889 + ,18 + ,17 + ,36 + ,21152 + ,9.063740747 + ,0 + ,18.2625 + ,48 + ,21 + ,42 + ,38084 + ,14.09669644 + ,0 + ,15.73694444 + ,29 + ,18 + ,49 + ,27717 + ,11.45807414 + ,0 + ,43.99972222 + ,28 + ,18 + ,57 + ,32928 + ,14.5766967 + ,0 + ,12.90416667 + ,34 + ,17 + ,12 + ,11342 + ,8.013459929 + ,0 + ,20.45111111 + ,33 + ,17 + ,40 + ,19499 + ,10.91719297 + ,0 + ,10.66527778 + ,34 + ,16 + ,43 + ,16380 + ,9.680449615 + ,0 + ,25.5275 + ,33 + ,15 + ,33 + ,36874 + ,12.30631181 + ,0 + ,38.75722222 + ,80 + ,21 + ,77 + ,48259 + ,19.15 + ,0 + ,14.49 + ,32 + ,16 + ,43 + ,16734 + ,9.974038576 + ,0 + ,14.32416667 + ,30 + ,14 + ,45 + ,28207 + ,10.61396958 + ,0 + ,19.5975 + ,41 + ,15 + ,47 + ,30143 + ,12.39969169 + ,0 + ,23.57111111 + ,41 + ,17 + ,43 + ,41369 + ,13.89235106 + ,0 + ,28.48277778 + ,51 + ,15 + ,45 + ,45833 + ,15.3368091 + ,0 + ,24.07722222 + ,18 + ,15 + ,50 + ,29156 + ,11.27570477 + ,0 + ,23.80805556 + ,34 + ,10 + ,35 + ,35944 + ,11.46890639 + ,0 + ,9.628333333 + ,31 + ,6 + ,7 + ,36278 + ,7.705473469 + ,0 + ,41.82777778 + ,39 + ,22 + ,71 + ,45588 + ,17.80919895 + ,0 + ,27.66972222 + ,54 + ,21 + ,67 + ,45097 + ,17.4519668 + ,0 + ,5.374722222 + ,14 + ,1 + ,0 + ,3895 + ,2.080910919 + ,0 + ,27.60361111 + ,24 + ,18 + ,62 + ,28394 + ,13.09820752 + ,0 + ,23.95277778 + ,24 + ,17 + ,54 + ,18632 + ,11.29135539 + ,0 + ,8.565833333 + ,8 + ,4 + ,4 + ,2325 + ,2.507172277 + ,0 + ,8.807222222 + ,26 + ,10 + ,25 + ,25139 + ,7.823664497 + ,0 + ,24.94611111 + ,19 + ,16 + ,40 + ,27975 + ,10.96662538 + ,0 + ,17.24666667 + ,11 + ,16 + ,38 + ,14483 + ,8.284173862 + ,0 + ,11.15305556 + ,14 + ,9 + ,19 + ,13127 + ,5.69261529 + ,0 + ,7.676111111 + ,1 + ,16 + ,17 + ,5839 + ,4.687276457 + ,0 + ,21.38611111 + ,39 + ,17 + ,67 + ,24069 + ,13.25987215 + ,0 + ,10.40555556 + ,5 + ,7 + ,14 + ,3738 + ,3.580093526 + ,0 + ,15.04361111 + ,37 + ,15 + ,30 + ,18625 + ,9.733116837 + ,0 + ,13.85055556 + ,32 + ,14 + ,54 + ,36341 + ,11.88651299 + ,0 + ,23.42694444 + ,38 + ,14 + ,35 + ,24548 + ,11.3271032 + ,0 + ,17.82638889 + ,47 + ,18 + ,59 + ,21792 + ,12.99614065 + ,0 + ,16.495 + ,47 + ,12 + ,24 + ,26263 + ,10.51715507 + ,0 + ,33.14111111 + ,37 + ,16 + ,58 + ,23686 + ,13.71616844 + ,0 + ,21.30611111 + ,51 + ,21 + ,42 + ,49303 + ,15.32447894 + ,0 + ,28.72916667 + ,45 + ,19 + ,46 + ,25659 + ,13.82274766 + ,0 + ,19.54 + ,21 + ,16 + ,61 + ,28904 + ,11.71158746 + ,0 + ,12.05833333 + ,1 + ,1 + ,3 + ,2781 + ,1.908370816 + ,0 + ,29.12166667 + ,42 + ,16 + ,52 + ,29236 + ,13.82088431 + ,0 + ,17.28194444 + ,26 + ,10 + ,25 + ,19546 + ,8.241327352 + ,0 + ,19.25111111 + ,21 + ,19 + ,40 + ,22818 + ,10.5053078 + ,0 + ,14.75472222 + ,4 + ,12 + ,32 + ,32689 + ,8.180917703 + ,0 + ,5.49 + ,10 + ,2 + ,4 + ,5752 + ,2.322655495 + ,0 + ,24.07777778 + ,43 + ,14 + ,49 + ,22197 + ,12.28598307 + ,0 + ,23.3625 + ,34 + ,17 + ,63 + ,20055 + ,12.54906448 + ,0 + ,21.65138889 + ,31 + ,19 + ,67 + ,25272 + ,13.11109062 + ,0 + ,24.75361111 + ,19 + ,14 + ,32 + ,82206 + ,11.7934321 + ,0 + ,25.27916667 + ,34 + ,11 + ,23 + ,32073 + ,10.81286184 + ,0 + ,11.18 + ,6 + ,4 + ,7 + ,5444 + ,3.068772109 + ,0 + ,17.82972222 + ,11 + ,16 + ,54 + ,20154 + ,9.674855276 + ,0 + ,14.12694444 + ,24 + ,20 + ,37 + ,36944 + ,11.39973018 + ,0 + ,15.72583333 + ,16 + ,12 + ,35 + ,8019 + ,7.166265475 + ,0 + ,17.44222222 + ,72 + ,15 + ,51 + ,30884 + ,13.46103292 + ,0 + ,20.14861111 + ,21 + ,16 + ,39 + ,19540 + ,9.81357389 + ,0) + ,dim=c(7 + ,289) + ,dimnames=list(c('Tijd' + ,'totblogs' + ,'Reviews' + ,'LFM' + ,'totsize' + ,'Score' + ,'Dum') + ,1:289)) > y <- array(NA,dim=c(7,289),dimnames=list(c('Tijd','totblogs','Reviews','LFM','totsize','Score','Dum'),1:289)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par4 = 'yes' > par3 = '2' > par2 = 'equal' > par1 = '6' > library(party) Loading required package: survival Loading required package: splines Loading required package: grid Loading required package: modeltools Loading required package: stats4 Loading required package: coin Loading required package: mvtnorm Loading required package: zoo Loading required package: sandwich Loading required package: strucchange Loading required package: vcd Loading required package: MASS Loading required package: colorspace > library(Hmisc) Attaching package: 'Hmisc' The following object(s) are masked from 'package:survival': untangle.specials The following object(s) are masked from 'package:base': format.pval, round.POSIXt, trunc.POSIXt, units > par1 <- as.numeric(par1) > par3 <- as.numeric(par3) > x <- data.frame(t(y)) > is.data.frame(x) [1] TRUE > x <- x[!is.na(x[,par1]),] > k <- length(x[1,]) > n <- length(x[,1]) > colnames(x)[par1] [1] "Score" > x[,par1] [1] 14.3600978 11.3090029 12.4581089 13.5039428 7.2193583 7.3813672 [7] 15.2609623 3.1654150 11.7814391 9.2778084 14.2278049 13.3753608 [13] 9.4877505 15.2151167 10.4271201 17.8497865 15.8953488 12.5511544 [19] 11.4339609 15.5350763 14.5223933 13.8933158 9.7122786 14.1294250 [25] 12.8953736 12.1602659 13.0118169 13.2987368 7.7754151 13.2842973 [31] 15.1145104 13.7479724 16.4294262 8.5843773 16.4741068 10.8353995 [37] 14.4803578 9.8171533 5.3452329 14.3931087 12.8763059 10.7687797 [43] 10.4969408 8.4436714 8.4077828 13.9406525 6.1632646 14.4368829 [49] 17.7758385 12.2486023 11.4568557 1.1530933 17.3568684 5.2246521 [55] 5.2386969 12.6052315 17.9840404 15.3027933 16.2306506 11.1772860 [61] 17.6425016 14.4328892 9.8414415 13.1018580 12.7822915 9.8413530 [67] 12.5226713 12.8517713 13.1788982 9.4599263 13.1446023 5.6799940 [73] 13.6210990 11.4493559 12.4561227 14.5225559 14.0091600 12.8791785 [79] 10.9145354 10.6771017 7.5005063 15.7151189 8.4514144 13.0428111 [85] 5.4757356 6.3185620 11.6710285 12.8826250 12.3410312 15.3188731 [91] 10.0045028 14.8683566 8.7068681 12.3840196 14.2369919 12.9817708 [97] 14.7511222 15.6821242 18.1400865 15.9186706 14.9617935 16.0407861 [103] 7.9587693 6.1170225 7.4086366 12.7050119 12.2118057 13.7541755 [109] 10.1639840 11.3802787 14.0940622 15.3888242 0.6945124 10.9899281 [115] 3.8477272 10.3653796 15.0728277 0.4068218 11.0744988 2.6517992 [121] 13.4007988 14.2665410 11.1935173 9.4335546 2.2985822 11.5599419 [127] 16.7003244 14.8407483 17.3840383 15.7303959 19.3626588 11.3260538 [133] 7.8518410 13.3022526 17.8976280 9.4632072 17.4191588 9.3322388 [139] 13.4187927 11.3772591 8.7023235 14.1961167 14.3980936 7.3013839 [145] 15.7202726 14.0340547 14.7549827 17.0370713 0.4987245 10.8241040 [151] 13.9900326 0.2952181 1.8336022 0.5994427 6.5123223 8.5944392 [157] 10.1746301 11.7068595 0.3366300 12.8154581 18.4813493 19.1500000 [163] 11.9897651 15.9631169 12.3686764 17.8535942 13.3397208 17.4358625 [169] 7.9717640 16.4942397 9.5896766 13.0201353 18.3099841 5.3114406 [175] 16.1454403 9.6148321 6.9700193 17.8328823 10.4363182 12.4952189 [181] 13.1301414 12.5995365 16.8927283 15.9582222 17.4462451 13.3609634 [187] 11.7020832 12.6700532 9.9429226 12.4778703 16.1794073 11.3426961 [193] 10.6145874 13.6336296 19.3000000 14.1786204 12.1311030 14.2912223 [199] 15.9042453 15.3053788 12.7171195 10.1041787 15.1063345 14.9747254 [205] 13.1494039 8.8033703 11.3767137 16.4882902 15.2869052 15.8744937 [211] 8.9918917 14.5206900 10.7332929 12.1125599 13.1203908 11.1761845 [217] 9.8524521 10.8382635 10.0160248 9.9842933 13.9065466 17.4382945 [223] 14.1365141 12.9546588 6.4058756 13.0082774 8.8438968 14.9527512 [229] 9.9853994 15.8528907 6.3048718 11.7074413 14.6847188 9.0637407 [235] 14.0966964 11.4580741 14.5766967 8.0134599 10.9171930 9.6804496 [241] 12.3063118 19.1500000 9.9740386 10.6139696 12.3996917 13.8923511 [247] 15.3368091 11.2757048 11.4689064 7.7054735 17.8091989 17.4519668 [253] 2.0809109 13.0982075 11.2913554 2.5071723 7.8236645 10.9666254 [259] 8.2841739 5.6926153 4.6872765 13.2598721 3.5800935 9.7331168 [265] 11.8865130 11.3271032 12.9961406 10.5171551 13.7161684 15.3244789 [271] 13.8227477 11.7115875 1.9083708 13.8208843 8.2413274 10.5053078 [277] 8.1809177 2.3226555 12.2859831 12.5490645 13.1110906 11.7934321 [283] 10.8128618 3.0687721 9.6748553 11.3997302 7.1662655 13.4610329 [289] 9.8135739 > if (par2 == 'kmeans') { + cl <- kmeans(x[,par1], par3) + print(cl) + clm <- matrix(cbind(cl$centers,1:par3),ncol=2) + clm <- clm[sort.list(clm[,1]),] + for (i in 1:par3) { + cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='') + } + cl$cluster <- as.factor(cl$cluster) + print(cl$cluster) + x[,par1] <- cl$cluster + } > if (par2 == 'quantiles') { + x[,par1] <- cut2(x[,par1],g=par3) + } > if (par2 == 'hclust') { + hc <- hclust(dist(x[,par1])^2, 'cen') + print(hc) + memb <- cutree(hc, k = par3) + dum <- c(mean(x[memb==1,par1])) + for (i in 2:par3) { + dum <- c(dum, mean(x[memb==i,par1])) + } + hcm <- matrix(cbind(dum,1:par3),ncol=2) + hcm <- hcm[sort.list(hcm[,1]),] + for (i in 1:par3) { + memb[memb==hcm[i,2]] <- paste('C',i,sep='') + } + memb <- as.factor(memb) + print(memb) + x[,par1] <- memb + } > if (par2=='equal') { + ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep='')) + x[,par1] <- as.factor(ed) + } > table(x[,par1]) C1 C2 74 215 > colnames(x) [1] "Tijd" "totblogs" "Reviews" "LFM" "totsize" "Score" "Dum" > colnames(x)[par1] [1] "Score" > x[,par1] [1] C2 C2 C2 C2 C1 C1 C2 C1 C2 C1 C2 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C1 C2 C2 [26] C2 C2 C2 C1 C2 C2 C2 C2 C1 C2 C2 C2 C1 C1 C2 C2 C2 C2 C1 C1 C2 C1 C2 C2 C2 [51] C2 C1 C2 C1 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C1 C2 C1 C2 C2 C2 [76] C2 C2 C2 C2 C2 C1 C2 C1 C2 C1 C1 C2 C2 C2 C2 C2 C2 C1 C2 C2 C2 C2 C2 C2 C2 [101] C2 C2 C1 C1 C1 C2 C2 C2 C2 C2 C2 C2 C1 C2 C1 C2 C2 C1 C2 C1 C2 C2 C2 C1 C1 [126] C2 C2 C2 C2 C2 C2 C2 C1 C2 C2 C1 C2 C1 C2 C2 C1 C2 C2 C1 C2 C2 C2 C2 C1 C2 [151] C2 C1 C1 C1 C1 C1 C2 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C1 C2 C1 C2 C2 C1 C2 [176] C1 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 [201] C2 C2 C2 C2 C2 C1 C2 C2 C2 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C1 [226] C2 C1 C2 C2 C2 C1 C2 C2 C1 C2 C2 C2 C1 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C1 [251] C2 C2 C1 C2 C2 C1 C1 C2 C1 C1 C1 C2 C1 C1 C2 C2 C2 C2 C2 C2 C2 C2 C1 C2 C1 [276] C2 C1 C1 C2 C2 C2 C2 C2 C1 C1 C2 C1 C2 C1 Levels: C1 C2 > if (par2 == 'none') { + m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x) + } > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > if (par2 != 'none') { + m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x) + if (par4=='yes') { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'',1,TRUE) + a<-table.element(a,'Prediction (training)',par3+1,TRUE) + a<-table.element(a,'Prediction (testing)',par3+1,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Actual',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) + a<-table.element(a,'CV',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) + a<-table.element(a,'CV',1,TRUE) + a<-table.row.end(a) + for (i in 1:10) { + ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1)) + m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,]) + if (i==1) { + m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,]) + m.ct.i.actu <- x[ind==1,par1] + m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,]) + m.ct.x.actu <- x[ind==2,par1] + } else { + m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,])) + m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1]) + m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,])) + m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1]) + } + } + print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred)) + numer <- 0 + for (i in 1:par3) { + print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,])) + numer <- numer + m.ct.i.tab[i,i] + } + print(m.ct.i.cp <- numer / sum(m.ct.i.tab)) + print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred)) + numer <- 0 + for (i in 1:par3) { + print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,])) + numer <- numer + m.ct.x.tab[i,i] + } + print(m.ct.x.cp <- numer / sum(m.ct.x.tab)) + for (i in 1:par3) { + a<-table.row.start(a) + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj]) + a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4)) + for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj]) + a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4)) + a<-table.row.end(a) + } + a<-table.row.start(a) + a<-table.element(a,'Overall',1,TRUE) + for (jjj in 1:par3) a<-table.element(a,'-') + a<-table.element(a,round(m.ct.i.cp,4)) + for (jjj in 1:par3) a<-table.element(a,'-') + a<-table.element(a,round(m.ct.x.cp,4)) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/1951d1323795536.tab") + } + } m.ct.i.pred m.ct.i.actu 1 2 1 582 86 2 94 1830 [1] 0.8712575 [1] 0.9511435 [1] 0.9305556 m.ct.x.pred m.ct.x.actu 1 2 1 61 11 2 21 205 [1] 0.8472222 [1] 0.9070796 [1] 0.8926174 > m Conditional inference tree with 9 terminal nodes Response: as.factor(Score) Inputs: Tijd, totblogs, Reviews, LFM, totsize, Dum Number of observations: 289 1) LFM <= 38; criterion = 1, statistic = 67.212 2) Tijd <= 20.41778; criterion = 0.997, statistic = 12.268 3) totblogs <= 23; criterion = 0.988, statistic = 9.538 4)* weights = 26 3) totblogs > 23 5)* weights = 12 2) Tijd > 20.41778 6)* weights = 19 1) LFM > 38 7) totblogs <= 83; criterion = 1, statistic = 20.434 8) Dum <= 0; criterion = 1, statistic = 47.424 9) totsize <= 20154; criterion = 0.991, statistic = 10.118 10)* weights = 14 9) totsize > 20154 11)* weights = 76 8) Dum > 0 12) Reviews <= 32; criterion = 1, statistic = 20.698 13) totsize <= 68504; criterion = 0.995, statistic = 11.25 14)* weights = 24 13) totsize > 68504 15)* weights = 10 12) Reviews > 32 16)* weights = 12 7) totblogs > 83 17)* weights = 96 > postscript(file="/var/wessaorg/rcomp/tmp/2rfdg1323795536.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(m) > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/386ms1323795536.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response') > dev.off() null device 1 > if (par2 == 'none') { + forec <- predict(m) + result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec)) + colnames(result) <- c('Actuals','Forecasts','Residuals') + print(result) + } > if (par2 != 'none') { + print(cbind(as.factor(x[,par1]),predict(m))) + myt <- table(as.factor(x[,par1]),predict(m)) + print(myt) + } [,1] [,2] [1,] 2 2 [2,] 2 2 [3,] 2 2 [4,] 2 2 [5,] 1 1 [6,] 1 1 [7,] 2 2 [8,] 1 1 [9,] 2 2 [10,] 1 1 [11,] 2 2 [12,] 2 2 [13,] 1 1 [14,] 2 2 [15,] 2 2 [16,] 2 2 [17,] 2 2 [18,] 2 2 [19,] 2 2 [20,] 2 2 [21,] 2 2 [22,] 2 2 [23,] 1 1 [24,] 2 2 [25,] 2 2 [26,] 2 2 [27,] 2 2 [28,] 2 2 [29,] 1 1 [30,] 2 2 [31,] 2 2 [32,] 2 2 [33,] 2 2 [34,] 1 1 [35,] 2 2 [36,] 2 1 [37,] 2 2 [38,] 1 1 [39,] 1 2 [40,] 2 2 [41,] 2 2 [42,] 2 2 [43,] 2 2 [44,] 1 1 [45,] 1 2 [46,] 2 2 [47,] 1 1 [48,] 2 2 [49,] 2 2 [50,] 2 2 [51,] 2 2 [52,] 1 1 [53,] 2 2 [54,] 1 1 [55,] 1 1 [56,] 2 2 [57,] 2 2 [58,] 2 2 [59,] 2 2 [60,] 2 2 [61,] 2 2 [62,] 2 2 [63,] 2 2 [64,] 2 2 [65,] 2 2 [66,] 2 2 [67,] 2 2 [68,] 2 2 [69,] 2 2 [70,] 1 2 [71,] 2 2 [72,] 1 1 [73,] 2 2 [74,] 2 2 [75,] 2 2 [76,] 2 2 [77,] 2 2 [78,] 2 2 [79,] 2 2 [80,] 2 2 [81,] 1 1 [82,] 2 2 [83,] 1 1 [84,] 2 2 [85,] 1 2 [86,] 1 1 [87,] 2 2 [88,] 2 2 [89,] 2 2 [90,] 2 2 [91,] 2 2 [92,] 2 2 [93,] 1 1 [94,] 2 2 [95,] 2 2 [96,] 2 2 [97,] 2 2 [98,] 2 2 [99,] 2 2 [100,] 2 2 [101,] 2 2 [102,] 2 2 [103,] 1 1 [104,] 1 1 [105,] 1 2 [106,] 2 2 [107,] 2 2 [108,] 2 2 [109,] 2 2 [110,] 2 2 [111,] 2 2 [112,] 2 2 [113,] 1 1 [114,] 2 2 [115,] 1 1 [116,] 2 2 [117,] 2 2 [118,] 1 1 [119,] 2 2 [120,] 1 1 [121,] 2 2 [122,] 2 2 [123,] 2 2 [124,] 1 2 [125,] 1 1 [126,] 2 2 [127,] 2 2 [128,] 2 2 [129,] 2 2 [130,] 2 2 [131,] 2 2 [132,] 2 2 [133,] 1 1 [134,] 2 2 [135,] 2 2 [136,] 1 2 [137,] 2 2 [138,] 1 1 [139,] 2 2 [140,] 2 2 [141,] 1 2 [142,] 2 2 [143,] 2 2 [144,] 1 1 [145,] 2 2 [146,] 2 2 [147,] 2 2 [148,] 2 2 [149,] 1 1 [150,] 2 2 [151,] 2 2 [152,] 1 1 [153,] 1 1 [154,] 1 1 [155,] 1 1 [156,] 1 2 [157,] 2 2 [158,] 2 2 [159,] 1 1 [160,] 2 2 [161,] 2 2 [162,] 2 2 [163,] 2 2 [164,] 2 2 [165,] 2 2 [166,] 2 2 [167,] 2 2 [168,] 2 2 [169,] 1 1 [170,] 2 2 [171,] 1 2 [172,] 2 2 [173,] 2 2 [174,] 1 1 [175,] 2 2 [176,] 1 1 [177,] 1 1 [178,] 2 2 [179,] 2 2 [180,] 2 2 [181,] 2 2 [182,] 2 2 [183,] 2 2 [184,] 2 2 [185,] 2 2 [186,] 2 2 [187,] 2 2 [188,] 2 2 [189,] 2 2 [190,] 2 2 [191,] 2 2 [192,] 2 2 [193,] 2 2 [194,] 2 2 [195,] 2 2 [196,] 2 2 [197,] 2 2 [198,] 2 2 [199,] 2 2 [200,] 2 2 [201,] 2 2 [202,] 2 2 [203,] 2 2 [204,] 2 2 [205,] 2 2 [206,] 1 1 [207,] 2 2 [208,] 2 2 [209,] 2 2 [210,] 2 2 [211,] 1 2 [212,] 2 2 [213,] 2 2 [214,] 2 2 [215,] 2 2 [216,] 2 2 [217,] 2 2 [218,] 2 2 [219,] 2 2 [220,] 2 2 [221,] 2 2 [222,] 2 2 [223,] 2 2 [224,] 2 2 [225,] 1 2 [226,] 2 2 [227,] 1 1 [228,] 2 2 [229,] 2 1 [230,] 2 2 [231,] 1 2 [232,] 2 2 [233,] 2 2 [234,] 1 1 [235,] 2 2 [236,] 2 2 [237,] 2 2 [238,] 1 1 [239,] 2 2 [240,] 1 2 [241,] 2 2 [242,] 2 2 [243,] 2 2 [244,] 2 2 [245,] 2 2 [246,] 2 2 [247,] 2 2 [248,] 2 2 [249,] 2 2 [250,] 1 1 [251,] 2 2 [252,] 2 2 [253,] 1 1 [254,] 2 2 [255,] 2 2 [256,] 1 1 [257,] 1 1 [258,] 2 2 [259,] 1 1 [260,] 1 1 [261,] 1 1 [262,] 2 2 [263,] 1 1 [264,] 1 1 [265,] 2 2 [266,] 2 2 [267,] 2 2 [268,] 2 1 [269,] 2 2 [270,] 2 2 [271,] 2 2 [272,] 2 2 [273,] 1 1 [274,] 2 2 [275,] 1 1 [276,] 2 2 [277,] 1 1 [278,] 1 1 [279,] 2 2 [280,] 2 2 [281,] 2 2 [282,] 2 2 [283,] 2 2 [284,] 1 1 [285,] 1 2 [286,] 2 1 [287,] 1 1 [288,] 2 2 [289,] 1 2 C1 C2 C1 58 16 C2 4 211 > postscript(file="/var/wessaorg/rcomp/tmp/4kfn41323795536.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > if(par2=='none') { + op <- par(mfrow=c(2,2)) + plot(density(result$Actuals),main='Kernel Density Plot of Actuals') + plot(density(result$Residuals),main='Kernel Density Plot of Residuals') + plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals') + plot(density(result$Forecasts),main='Kernel Density Plot of Predictions') + par(op) + } > if(par2!='none') { + plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted') + } > dev.off() null device 1 > if (par2 == 'none') { + detcoef <- cor(result$Forecasts,result$Actuals) + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goodness of Fit',2,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Correlation',1,TRUE) + a<-table.element(a,round(detcoef,4)) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'R-squared',1,TRUE) + a<-table.element(a,round(detcoef*detcoef,4)) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'RMSE',1,TRUE) + a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4)) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/55v0i1323795536.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'#',header=TRUE) + a<-table.element(a,'Actuals',header=TRUE) + a<-table.element(a,'Forecasts',header=TRUE) + a<-table.element(a,'Residuals',header=TRUE) + a<-table.row.end(a) + for (i in 1:length(result$Actuals)) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,result$Actuals[i]) + a<-table.element(a,result$Forecasts[i]) + a<-table.element(a,result$Residuals[i]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/6u4fu1323795537.tab") + } > if (par2 != 'none') { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'',1,TRUE) + for (i in 1:par3) { + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + } + a<-table.row.end(a) + for (i in 1:par3) { + a<-table.row.start(a) + a<-table.element(a,paste('C',i,sep=''),1,TRUE) + for (j in 1:par3) { + a<-table.element(a,myt[i,j]) + } + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/7a0f51323795537.tab") + } > > try(system("convert tmp/2rfdg1323795536.ps tmp/2rfdg1323795536.png",intern=TRUE)) character(0) > try(system("convert tmp/386ms1323795536.ps tmp/386ms1323795536.png",intern=TRUE)) character(0) > try(system("convert tmp/4kfn41323795536.ps tmp/4kfn41323795536.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 4.976 0.287 5.260