R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(589,559,623,617,603,558,609,583,570,543,598,569,552,514,569,529,515,481,536,498,446,503,470,458,437,502,482,474,457,522,513,515,506,576,556,559,541,606,600,588,570,626,601,588,573,622,570,547,512,554,517,506,479,527,508,532,532,588,566,573,545,597,555,548,524,572) > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '4' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = 'FALSE' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc*2, ncol=nrc) + pval <- matrix(NA, nrow=nrc*2, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + qqline(residus) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] -0.2429662 0.1911634 0.1719845 -0.03957096 -0.59469633 -0.2117034 [2,] -0.2820589 0.1800539 0.1787831 0.00000000 -0.59098810 -0.2081639 [3,] -0.2550332 0.1423665 0.0000000 0.00000000 -0.60902701 -0.2288868 [4,] -0.3059947 0.0000000 0.0000000 0.00000000 -0.53615117 -0.2344846 [5,] -0.3154136 0.0000000 0.0000000 0.00000000 -0.08561069 -0.2102677 [6,] -0.3188965 0.0000000 0.0000000 0.00000000 0.00000000 -0.2044082 [7,] -0.2880326 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000 [8,] NA NA NA NA NA NA [9,] NA NA NA NA NA NA [10,] NA NA NA NA NA NA [11,] NA NA NA NA NA NA [12,] NA NA NA NA NA NA [13,] NA NA NA NA NA NA [14,] NA NA NA NA NA NA [,7] [1,] 0.5467617 [2,] 0.5500292 [3,] 0.5120519 [4,] 0.4775446 [5,] 0.0000000 [6,] 0.0000000 [7,] 0.0000000 [8,] NA [9,] NA [10,] NA [11,] NA [12,] NA [13,] NA [14,] NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.72828 0.41807 0.34621 0.95461 0.12904 0.15663 0.16479 [2,] 0.03125 0.18385 0.18509 NA 0.12492 0.12455 0.15368 [3,] 0.05355 0.29099 NA NA 0.18377 0.07873 0.27125 [4,] 0.01576 NA NA NA 0.26330 0.07836 0.33613 [5,] 0.01261 NA NA NA 0.50407 0.10538 NA [6,] 0.01154 NA NA NA NA 0.11600 NA [7,] 0.02111 NA NA NA NA NA NA [8,] NA NA NA NA NA NA NA [9,] NA NA NA NA NA NA NA [10,] NA NA NA NA NA NA NA [11,] NA NA NA NA NA NA NA [12,] NA NA NA NA NA NA NA [13,] NA NA NA NA NA NA NA [14,] NA NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.243 0.1912 0.1720 -0.0396 -0.5947 -0.2117 0.5468 s.e. 0.696 0.2344 0.1811 0.6922 0.3862 0.1475 0.3886 sigma^2 estimated as 377.3: log likelihood = -267.85, aic = 551.7 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.243 0.1912 0.1720 -0.0396 -0.5947 -0.2117 0.5468 s.e. 0.696 0.2344 0.1811 0.6922 0.3862 0.1475 0.3886 sigma^2 estimated as 377.3: log likelihood = -267.85, aic = 551.7 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.2821 0.1801 0.1788 0 -0.5910 -0.2082 0.5500 s.e. 0.1278 0.1339 0.1333 0 0.3797 0.1336 0.3806 sigma^2 estimated as 377.3: log likelihood = -267.85, aic = 549.7 [[3]][[4]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.2550 0.1424 0 0 -0.6090 -0.2289 0.5121 s.e. 0.1295 0.1336 0 0 0.4529 0.1280 0.4611 sigma^2 estimated as 389.1: log likelihood = -268.74, aic = 549.48 [[3]][[5]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.3060 0 0 0 -0.5362 -0.2345 0.4775 s.e. 0.1232 0 0 0 0.4749 0.1310 0.4926 sigma^2 estimated as 396: log likelihood = -269.29, aic = 548.59 [[3]][[6]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.3154 0 0 0 -0.0856 -0.2103 0 s.e. 0.1228 0 0 0 0.1274 0.1280 0 sigma^2 estimated as 398.9: log likelihood = -269.45, aic = 546.91 [[3]][[7]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.3189 0 0 0 0 -0.2044 0 s.e. 0.1226 0 0 0 0 0.1283 0 sigma^2 estimated as 402.1: log likelihood = -269.68, aic = 545.35 $aic [1] 551.7005 549.7038 549.4784 548.5898 546.9053 545.3549 545.8225 Warning messages: 1: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 2: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 5: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE > postscript(file="/var/wessaorg/rcomp/tmp/1aa3r1324389644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 66 Frequency = 1 [1] 0.3400592 0.1288412 0.1384362 -0.1328287 -1.2409656 -13.9179724 [7] -17.4070671 -23.6386496 -5.2555606 17.9041000 9.6216152 -1.9633388 [13] -3.9966026 -14.9618749 -7.1429447 -15.9355700 -1.6071552 8.7012224 [19] 3.2665502 1.6475157 -38.3753949 76.3727008 -59.6974502 -4.3113861 [25] 39.1874990 18.8989809 15.8119126 8.5544715 -2.3615554 17.3997000 [31] -1.0560806 13.0861891 19.2204316 11.2071751 -6.2267301 -0.8428233 [37] -7.6027304 -7.6093286 14.6540075 -7.7743306 -2.4963318 -7.4564784 [43] -23.7926338 -7.5716619 0.9066147 -7.6520170 -26.6964863 -20.7637388 [49] -24.1667415 -15.2176047 8.2973027 15.3405236 12.3747981 7.3158701 [55] 13.9380623 36.9360589 33.4213643 13.8756479 2.1609999 -14.5260151 [61] -31.0037548 -11.1811735 -17.2051281 -12.0503125 7.3359473 0.6708487 > postscript(file="/var/wessaorg/rcomp/tmp/2kp541324389644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/3p6f91324389644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/41gxd1324389644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/5o93q1324389644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/61m0r1324389644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/7k5we1324389644.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > qqline(resid) > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/863dh1324389644.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/9dh8x1324389644.tab") > > try(system("convert tmp/1aa3r1324389644.ps tmp/1aa3r1324389644.png",intern=TRUE)) character(0) > try(system("convert tmp/2kp541324389644.ps tmp/2kp541324389644.png",intern=TRUE)) character(0) > try(system("convert tmp/3p6f91324389644.ps tmp/3p6f91324389644.png",intern=TRUE)) character(0) > try(system("convert tmp/41gxd1324389644.ps tmp/41gxd1324389644.png",intern=TRUE)) character(0) > try(system("convert tmp/5o93q1324389644.ps tmp/5o93q1324389644.png",intern=TRUE)) character(0) > try(system("convert tmp/61m0r1324389644.ps tmp/61m0r1324389644.png",intern=TRUE)) character(0) > try(system("convert tmp/7k5we1324389644.ps tmp/7k5we1324389644.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.028 0.412 3.447