R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(11 + ,7 + ,3 + ,7 + ,6 + ,11 + ,7 + ,0 + ,7 + ,7 + ,11 + ,6 + ,0 + ,8 + ,8 + ,11 + ,6 + ,6 + ,9 + ,8 + ,11 + ,8 + ,5 + ,5 + ,9 + ,11 + ,8 + ,0 + ,7 + ,8 + ,11 + ,8 + ,8 + ,8 + ,8 + ,11 + ,5 + ,0 + ,7 + ,7 + ,11 + ,4 + ,0 + ,8 + ,7 + ,11 + ,9 + ,9 + ,8 + ,4 + ,11 + ,6 + ,6 + ,6 + ,6 + ,11 + ,6 + ,6 + ,4 + ,7 + ,11 + ,5 + ,5 + ,8 + ,5 + ,11 + ,6 + ,4 + ,8 + ,8 + ,11 + ,2 + ,0 + ,7 + ,5 + ,11 + ,4 + ,0 + ,9 + ,4 + ,11 + ,2 + ,2 + ,2 + ,9 + ,11 + ,6 + ,6 + ,8 + ,8 + ,11 + ,7 + ,0 + ,8 + ,4 + ,11 + ,8 + ,4 + ,4 + ,6 + ,11 + ,5 + ,5 + ,5 + ,6 + ,11 + ,7 + ,7 + ,7 + ,7 + ,11 + ,5 + ,5 + ,8 + ,3 + ,11 + ,4 + ,4 + ,4 + ,4 + ,11 + ,6 + ,6 + ,6 + ,6 + ,11 + ,6 + ,6 + ,6 + ,6 + ,11 + ,7 + ,0 + ,9 + ,7 + ,11 + ,7 + ,1 + ,7 + ,5 + ,11 + ,8 + ,0 + ,6 + ,8 + ,11 + ,4 + ,4 + ,4 + ,6 + ,11 + ,4 + ,4 + ,8 + ,4 + ,11 + ,7 + ,7 + ,3 + ,9 + ,11 + ,7 + ,7 + ,7 + ,7 + ,11 + ,4 + ,0 + ,4 + ,4 + ,11 + ,7 + ,4 + ,7 + ,6 + ,11 + ,5 + ,5 + ,8 + ,8 + ,11 + ,6 + ,0 + ,6 + ,6 + ,11 + ,5 + ,5 + ,5 + ,5 + ,11 + ,6 + ,1 + ,6 + ,6 + ,11 + ,7 + ,2 + ,9 + ,6 + ,11 + ,6 + ,0 + ,8 + ,4 + ,11 + ,9 + ,9 + ,7 + ,7 + ,11 + ,7 + ,3 + ,3 + ,9 + ,11 + ,4 + ,0 + ,4 + ,8 + ,11 + ,6 + ,6 + ,6 + ,6 + ,11 + ,5 + ,1 + ,8 + ,6 + ,11 + ,5 + ,5 + ,5 + ,5 + ,11 + ,4 + ,0 + ,7 + ,7 + ,11 + ,7 + ,0 + ,7 + ,5 + ,11 + ,6 + ,0 + ,9 + ,8 + ,11 + ,6 + ,6 + ,6 + ,6 + ,11 + ,7 + ,7 + ,8 + ,8 + ,11 + ,5 + ,0 + ,5 + ,5 + ,11 + ,4 + ,4 + ,4 + ,4 + ,11 + ,5 + ,5 + ,8 + ,5 + ,11 + ,5 + ,1 + ,9 + ,6 + ,12 + ,4 + ,4 + ,4 + ,4 + ,12 + ,9 + ,9 + ,8 + ,6 + ,12 + ,8 + ,2 + ,2 + ,9 + ,12 + ,8 + ,8 + ,8 + ,7 + ,12 + ,3 + ,3 + ,7 + ,3 + ,12 + ,6 + ,1 + ,7 + ,6 + ,12 + ,6 + ,0 + ,6 + ,6 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,5 + ,0 + ,5 + ,5 + ,12 + ,5 + ,0 + ,8 + ,5 + ,12 + ,6 + ,6 + ,4 + ,5 + ,12 + ,7 + ,2 + ,9 + ,9 + ,12 + ,6 + ,1 + ,6 + ,8 + ,12 + ,5 + ,5 + ,5 + ,5 + ,12 + ,5 + ,5 + ,5 + ,6 + ,12 + ,7 + ,5 + ,7 + ,7 + ,12 + ,5 + ,5 + ,8 + ,5 + ,12 + ,6 + ,6 + ,9 + ,6 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,9 + ,0 + ,6 + ,6 + ,12 + ,8 + ,0 + ,5 + ,6 + ,12 + ,5 + ,1 + ,3 + ,9 + ,12 + ,7 + ,7 + ,7 + ,7 + ,12 + ,7 + ,2 + ,9 + ,9 + ,12 + ,4 + ,4 + ,7 + ,4 + ,12 + ,6 + ,0 + ,8 + ,8 + ,12 + ,5 + ,5 + ,5 + ,5 + ,12 + ,5 + ,5 + ,5 + ,8 + ,12 + ,3 + ,3 + ,8 + ,9 + ,12 + ,6 + ,0 + ,6 + ,6 + ,12 + ,4 + ,4 + ,9 + ,4 + ,12 + ,9 + ,9 + ,5 + ,7 + ,12 + ,8 + ,0 + ,8 + ,8 + ,12 + ,4 + ,4 + ,8 + ,9 + ,12 + ,2 + ,2 + ,7 + ,9 + ,12 + ,7 + ,7 + ,7 + ,7 + ,12 + ,7 + ,7 + ,8 + ,8 + ,12 + ,6 + ,6 + ,4 + ,4 + ,12 + ,5 + ,0 + ,5 + ,6 + ,12 + ,8 + ,5 + ,9 + ,7 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,3 + ,0 + ,7 + ,7 + ,12 + ,5 + ,5 + ,5 + ,5 + ,12 + ,9 + ,9 + ,2 + ,9 + ,12 + ,7 + ,0 + ,7 + ,7 + ,12 + ,7 + ,7 + ,7 + ,7 + ,12 + ,6 + ,1 + ,6 + ,6 + ,12 + ,3 + ,3 + ,8 + ,6 + ,12 + ,7 + ,7 + ,9 + ,9 + ,12 + ,8 + ,8 + ,8 + ,9 + ,12 + ,3 + ,0 + ,3 + ,8 + ,12 + ,5 + ,5 + ,5 + ,8 + ,12 + ,8 + ,3 + ,7 + ,3 + ,12 + ,7 + ,0 + ,8 + ,6 + ,12 + ,5 + ,5 + ,5 + ,5 + ,12 + ,7 + ,7 + ,9 + ,7 + ,12 + ,6 + ,0 + ,6 + ,6 + ,12 + ,7 + ,0 + ,7 + ,7 + ,12 + ,9 + ,0 + ,7 + ,7 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,6 + ,0 + ,3 + ,8 + ,12 + ,6 + ,6 + ,9 + ,9 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,2 + ,2 + ,2 + ,9 + ,12 + ,5 + ,5 + ,5 + ,5 + ,12 + ,5 + ,0 + ,5 + ,6 + ,12 + ,4 + ,4 + ,9 + ,4 + ,12 + ,7 + ,0 + ,7 + ,7 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,5 + ,5 + ,8 + ,8 + ,12 + ,8 + ,8 + ,8 + ,8 + ,12 + ,7 + ,6 + ,6 + ,9 + ,12 + ,5 + ,5 + ,3 + ,8 + ,12 + ,4 + ,0 + ,7 + ,4 + ,12 + ,8 + ,8 + ,9 + ,6 + ,12 + ,6 + ,0 + ,7 + ,6 + ,12 + ,9 + ,9 + ,4 + ,7 + ,12 + ,5 + ,5 + ,5 + ,9 + ,12 + ,6 + ,0 + ,6 + ,8 + ,12 + ,4 + ,0 + ,4 + ,4 + ,12 + ,6 + ,0 + ,6 + ,6 + ,12 + ,3 + ,3 + ,7 + ,9 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,5 + ,0 + ,5 + ,5 + ,12 + ,4 + ,4 + ,9 + ,8 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,5 + ,0 + ,9 + ,6 + ,12 + ,4 + ,4 + ,3 + ,6 + ,12 + ,7 + ,7 + ,7 + ,7 + ,12 + ,6 + ,0 + ,6 + ,7 + ,12 + ,7 + ,5 + ,5 + ,9 + ,12 + ,6 + ,6 + ,6 + ,6 + ,12 + ,6 + ,6 + ,9 + ,6 + ,12 + ,8 + ,8 + ,8 + ,6 + ,12 + ,7 + ,2 + ,7 + ,4 + ,12 + ,7 + ,7 + ,7 + ,7 + ,12 + ,4 + ,0 + ,4 + ,8 + ,12 + ,6 + ,0 + ,8 + ,7 + ,12 + ,5 + ,5 + ,5 + ,9 + ,12 + ,2 + ,0 + ,9 + ,6) + ,dim=c(5 + ,156) + ,dimnames=list(c('Maand' + ,'Schoolprestaties' + ,'Relation' + ,'Friends' + ,'Job') + ,1:156)) > y <- array(NA,dim=c(5,156),dimnames=list(c('Maand','Schoolprestaties','Relation','Friends','Job'),1:156)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '2' > library(lattice) > library(lmtest) Loading required package: zoo > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Schoolprestaties Maand Relation Friends Job t 1 7 11 3 7 6 1 2 7 11 0 7 7 2 3 6 11 0 8 8 3 4 6 11 6 9 8 4 5 8 11 5 5 9 5 6 8 11 0 7 8 6 7 8 11 8 8 8 7 8 5 11 0 7 7 8 9 4 11 0 8 7 9 10 9 11 9 8 4 10 11 6 11 6 6 6 11 12 6 11 6 4 7 12 13 5 11 5 8 5 13 14 6 11 4 8 8 14 15 2 11 0 7 5 15 16 4 11 0 9 4 16 17 2 11 2 2 9 17 18 6 11 6 8 8 18 19 7 11 0 8 4 19 20 8 11 4 4 6 20 21 5 11 5 5 6 21 22 7 11 7 7 7 22 23 5 11 5 8 3 23 24 4 11 4 4 4 24 25 6 11 6 6 6 25 26 6 11 6 6 6 26 27 7 11 0 9 7 27 28 7 11 1 7 5 28 29 8 11 0 6 8 29 30 4 11 4 4 6 30 31 4 11 4 8 4 31 32 7 11 7 3 9 32 33 7 11 7 7 7 33 34 4 11 0 4 4 34 35 7 11 4 7 6 35 36 5 11 5 8 8 36 37 6 11 0 6 6 37 38 5 11 5 5 5 38 39 6 11 1 6 6 39 40 7 11 2 9 6 40 41 6 11 0 8 4 41 42 9 11 9 7 7 42 43 7 11 3 3 9 43 44 4 11 0 4 8 44 45 6 11 6 6 6 45 46 5 11 1 8 6 46 47 5 11 5 5 5 47 48 4 11 0 7 7 48 49 7 11 0 7 5 49 50 6 11 0 9 8 50 51 6 11 6 6 6 51 52 7 11 7 8 8 52 53 5 11 0 5 5 53 54 4 11 4 4 4 54 55 5 11 5 8 5 55 56 5 11 1 9 6 56 57 4 12 4 4 4 57 58 9 12 9 8 6 58 59 8 12 2 2 9 59 60 8 12 8 8 7 60 61 3 12 3 7 3 61 62 6 12 1 7 6 62 63 6 12 0 6 6 63 64 6 12 6 6 6 64 65 5 12 0 5 5 65 66 5 12 0 8 5 66 67 6 12 6 4 5 67 68 7 12 2 9 9 68 69 6 12 1 6 8 69 70 5 12 5 5 5 70 71 5 12 5 5 6 71 72 7 12 5 7 7 72 73 5 12 5 8 5 73 74 6 12 6 9 6 74 75 6 12 6 6 6 75 76 9 12 0 6 6 76 77 8 12 0 5 6 77 78 5 12 1 3 9 78 79 7 12 7 7 7 79 80 7 12 2 9 9 80 81 4 12 4 7 4 81 82 6 12 0 8 8 82 83 5 12 5 5 5 83 84 5 12 5 5 8 84 85 3 12 3 8 9 85 86 6 12 0 6 6 86 87 4 12 4 9 4 87 88 9 12 9 5 7 88 89 8 12 0 8 8 89 90 4 12 4 8 9 90 91 2 12 2 7 9 91 92 7 12 7 7 7 92 93 7 12 7 8 8 93 94 6 12 6 4 4 94 95 5 12 0 5 6 95 96 8 12 5 9 7 96 97 6 12 6 6 6 97 98 3 12 0 7 7 98 99 5 12 5 5 5 99 100 9 12 9 2 9 100 101 7 12 0 7 7 101 102 7 12 7 7 7 102 103 6 12 1 6 6 103 104 3 12 3 8 6 104 105 7 12 7 9 9 105 106 8 12 8 8 9 106 107 3 12 0 3 8 107 108 5 12 5 5 8 108 109 8 12 3 7 3 109 110 7 12 0 8 6 110 111 5 12 5 5 5 111 112 7 12 7 9 7 112 113 6 12 0 6 6 113 114 7 12 0 7 7 114 115 9 12 0 7 7 115 116 6 12 6 6 6 116 117 6 12 0 3 8 117 118 6 12 6 9 9 118 119 6 12 6 6 6 119 120 2 12 2 2 9 120 121 5 12 5 5 5 121 122 5 12 0 5 6 122 123 4 12 4 9 4 123 124 7 12 0 7 7 124 125 6 12 6 6 6 125 126 5 12 5 8 8 126 127 8 12 8 8 8 127 128 7 12 6 6 9 128 129 5 12 5 3 8 129 130 4 12 0 7 4 130 131 8 12 8 9 6 131 132 6 12 0 7 6 132 133 9 12 9 4 7 133 134 5 12 5 5 9 134 135 6 12 0 6 8 135 136 4 12 0 4 4 136 137 6 12 0 6 6 137 138 3 12 3 7 9 138 139 6 12 6 6 6 139 140 5 12 0 5 5 140 141 4 12 4 9 8 141 142 6 12 6 6 6 142 143 5 12 0 9 6 143 144 4 12 4 3 6 144 145 7 12 7 7 7 145 146 6 12 0 6 7 146 147 7 12 5 5 9 147 148 6 12 6 6 6 148 149 6 12 6 9 6 149 150 8 12 8 8 6 150 151 7 12 2 7 4 151 152 7 12 7 7 7 152 153 4 12 0 4 8 153 154 6 12 0 8 7 154 155 5 12 5 5 9 155 156 2 12 0 9 6 156 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Maand Relation Friends Job t -0.634404 0.388648 0.174617 0.128198 0.155388 -0.006112 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -4.1183 -0.8964 0.0454 0.9574 3.7337 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.634404 4.969335 -0.128 0.8986 Maand 0.388648 0.450363 0.863 0.3895 Relation 0.174617 0.041655 4.192 4.71e-05 *** Friends 0.128198 0.066804 1.919 0.0569 . Job 0.155388 0.077531 2.004 0.0468 * t -0.006112 0.004793 -1.275 0.2042 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.499 on 150 degrees of freedom Multiple R-squared: 0.1597, Adjusted R-squared: 0.1317 F-statistic: 5.703 on 5 and 150 DF, p-value: 7.59e-05 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.55933976 0.88132047 0.4406602 [2,] 0.57783862 0.84432277 0.4221614 [3,] 0.58476087 0.83047826 0.4152391 [4,] 0.51840504 0.96318991 0.4815950 [5,] 0.41862070 0.83724140 0.5813793 [6,] 0.36195725 0.72391450 0.6380428 [7,] 0.39940727 0.79881454 0.6005927 [8,] 0.35864214 0.71728428 0.6413579 [9,] 0.38892051 0.77784102 0.6110795 [10,] 0.35408553 0.70817106 0.6459145 [11,] 0.72223166 0.55553668 0.2777683 [12,] 0.88852200 0.22295599 0.1114780 [13,] 0.85158694 0.29682612 0.1484131 [14,] 0.82826256 0.34347488 0.1717374 [15,] 0.78832092 0.42335815 0.2116791 [16,] 0.74978607 0.50042786 0.2502139 [17,] 0.70342902 0.59314197 0.2965710 [18,] 0.65343958 0.69312084 0.3465604 [19,] 0.73364091 0.53271819 0.2663591 [20,] 0.77810610 0.44378779 0.2218939 [21,] 0.85518906 0.28962188 0.1448109 [22,] 0.84389558 0.31220884 0.1561044 [23,] 0.85022960 0.29954080 0.1497704 [24,] 0.82118703 0.35762594 0.1788130 [25,] 0.78037442 0.43925116 0.2196256 [26,] 0.73729744 0.52540513 0.2627026 [27,] 0.70764815 0.58470371 0.2923519 [28,] 0.72500478 0.54999045 0.2749952 [29,] 0.69696444 0.60607112 0.3030356 [30,] 0.65151319 0.69697362 0.3484868 [31,] 0.61168011 0.77663979 0.3883199 [32,] 0.57764722 0.84470556 0.4223528 [33,] 0.53942988 0.92114023 0.4605701 [34,] 0.56217169 0.87565663 0.4378283 [35,] 0.53866293 0.92267414 0.4613371 [36,] 0.52529222 0.94941555 0.4747078 [37,] 0.47457826 0.94915652 0.5254217 [38,] 0.43759810 0.87519621 0.5624019 [39,] 0.39293584 0.78587169 0.6070642 [40,] 0.39189097 0.78378194 0.6081090 [41,] 0.42743494 0.85486987 0.5725651 [42,] 0.38338855 0.76677710 0.6166114 [43,] 0.33659497 0.67318994 0.6634050 [44,] 0.29709658 0.59419315 0.7029034 [45,] 0.26061350 0.52122700 0.7393865 [46,] 0.23113717 0.46227434 0.7688628 [47,] 0.21016181 0.42032363 0.7898382 [48,] 0.18296310 0.36592619 0.8170369 [49,] 0.16458458 0.32916916 0.8354154 [50,] 0.18172499 0.36344997 0.8182750 [51,] 0.20607498 0.41214996 0.7939250 [52,] 0.17983007 0.35966013 0.8201699 [53,] 0.25954075 0.51908151 0.7404592 [54,] 0.22211171 0.44422343 0.7778883 [55,] 0.19113391 0.38226782 0.8088661 [56,] 0.16421424 0.32842847 0.8357858 [57,] 0.13609019 0.27218038 0.8639098 [58,] 0.11459478 0.22918957 0.8854052 [59,] 0.09319973 0.18639946 0.9068003 [60,] 0.07860767 0.15721534 0.9213923 [61,] 0.06331101 0.12662203 0.9366890 [62,] 0.05448136 0.10896272 0.9455186 [63,] 0.04868209 0.09736417 0.9513179 [64,] 0.03859839 0.07719677 0.9614016 [65,] 0.03651026 0.07302053 0.9634897 [66,] 0.03032178 0.06064356 0.9696782 [67,] 0.02345842 0.04691684 0.9765416 [68,] 0.08571400 0.17142801 0.9142860 [69,] 0.14203855 0.28407710 0.8579614 [70,] 0.12701547 0.25403093 0.8729845 [71,] 0.10462072 0.20924144 0.8953793 [72,] 0.09265803 0.18531606 0.9073420 [73,] 0.10126292 0.20252584 0.8987371 [74,] 0.08637719 0.17275437 0.9136228 [75,] 0.07501642 0.15003284 0.9249836 [76,] 0.07162311 0.14324622 0.9283769 [77,] 0.16723447 0.33446895 0.8327655 [78,] 0.14742010 0.29484019 0.8525799 [79,] 0.17576418 0.35152836 0.8242358 [80,] 0.21090050 0.42180101 0.7890995 [81,] 0.27184518 0.54369035 0.7281548 [82,] 0.33984242 0.67968483 0.6601576 [83,] 0.60841653 0.78316693 0.3915835 [84,] 0.56534767 0.86930466 0.4346523 [85,] 0.51849883 0.96300233 0.4815012 [86,] 0.47803572 0.95607145 0.5219643 [87,] 0.43060747 0.86121493 0.5693925 [88,] 0.42435935 0.84871870 0.5756407 [89,] 0.38186553 0.76373106 0.6181345 [90,] 0.45574857 0.91149713 0.5442514 [91,] 0.43776215 0.87552429 0.5622379 [92,] 0.50900837 0.98198327 0.4909916 [93,] 0.51173134 0.97653732 0.4882687 [94,] 0.46394970 0.92789940 0.5360503 [95,] 0.42280921 0.84561841 0.5771908 [96,] 0.59339433 0.81321134 0.4066057 [97,] 0.54444860 0.91110280 0.4555514 [98,] 0.50776733 0.98446534 0.4922327 [99,] 0.54168865 0.91662269 0.4583113 [100,] 0.52429368 0.95141264 0.4757063 [101,] 0.58211828 0.83576344 0.4178817 [102,] 0.57494619 0.85010763 0.4250538 [103,] 0.55081841 0.89836319 0.4491816 [104,] 0.49870855 0.99741711 0.5012914 [105,] 0.45642752 0.91285504 0.5435725 [106,] 0.46142448 0.92284896 0.5385755 [107,] 0.75971348 0.48057305 0.2402865 [108,] 0.71453964 0.57092073 0.2854604 [109,] 0.72925842 0.54148316 0.2707416 [110,] 0.68587438 0.62825124 0.3141256 [111,] 0.63308748 0.73382503 0.3669125 [112,] 0.77712029 0.44575942 0.2228797 [113,] 0.75849811 0.48300378 0.2415019 [114,] 0.70869378 0.58261244 0.2913062 [115,] 0.78064982 0.43870036 0.2193502 [116,] 0.82684858 0.34630284 0.1731514 [117,] 0.79316126 0.41367748 0.2068387 [118,] 0.78437324 0.43125351 0.2156268 [119,] 0.74898456 0.50203088 0.2510154 [120,] 0.70891829 0.58216342 0.2910817 [121,] 0.67520257 0.64959485 0.3247974 [122,] 0.66667777 0.66664446 0.3333222 [123,] 0.61368075 0.77263851 0.3863193 [124,] 0.57807674 0.84384651 0.4219233 [125,] 0.63519341 0.72961317 0.3648066 [126,] 0.57189860 0.85620280 0.4281014 [127,] 0.60926290 0.78147420 0.3907371 [128,] 0.57418880 0.85162240 0.4258112 [129,] 0.57823459 0.84353082 0.4217654 [130,] 0.59862664 0.80274673 0.4013734 [131,] 0.51414081 0.97171838 0.4858592 [132,] 0.42331333 0.84662665 0.5766867 [133,] 0.48917247 0.97834494 0.5108275 [134,] 0.41074245 0.82148490 0.5892575 [135,] 0.33518272 0.67036544 0.6648173 [136,] 0.50950928 0.98098145 0.4904907 [137,] 0.41077188 0.82154376 0.5892281 [138,] 0.28278369 0.56556737 0.7172163 [139,] 0.17599553 0.35199107 0.8240045 > postscript(file="/var/www/rcomp/tmp/1ymo01324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/2pbm81324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/3ery21324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/4wdpp1324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/5zbs71324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 156 Frequency = 1 1 2 3 4 5 6 1.01182046 1.38639515 0.10892133 -1.06086479 1.47727022 2.25545710 7 8 9 10 11 12 0.73643759 -0.57693018 -1.69901616 2.20170956 -0.32270673 -0.21558526 13 14 15 16 17 18 -1.23687417 -0.52230853 -3.22336740 -1.31826397 -3.54093509 -0.84709213 19 20 21 22 23 24 1.82827179 2.33793551 -0.95876716 0.28632722 -0.86497405 -1.32683904 25 26 27 28 29 30 -0.23713250 -0.23102005 1.28280943 1.68147770 2.52424177 -1.60094003 31 32 33 34 35 36 -1.79684563 0.54946971 0.35356412 -0.56724782 1.04502691 -1.56245143 37 38 39 40 41 42 0.88391699 -0.69946776 0.72152519 1.16842567 0.96274559 2.05934274 43 44 45 46 47 48 1.31517337 -1.12767470 -0.11488359 -0.49208454 -0.64445575 -1.33243237 49 50 51 52 53 54 1.98445574 0.26800784 -0.07820892 0.18611432 0.26530238 -1.14346568 55 56 57 58 59 60 -0.98015147 -0.55915852 -1.51377654 1.79568308 2.32713942 0.82713683 61 62 63 64 65 66 -2.54391751 0.34526481 0.65419238 -0.38739532 -0.04999647 -0.42847931 67 68 69 70 71 72 0.04272670 0.48476244 0.20547469 -0.89251770 -1.04179309 0.55253467 73 74 75 76 77 78 -1.25877565 -0.71086615 -0.32015843 3.73365417 2.86796504 -0.51030585 79 80 81 82 83 84 0.24608840 0.55811179 -1.75167313 0.20315632 -0.81305591 -1.27310697 85 86 87 88 89 90 -3.45774425 0.79477862 -1.97139531 2.20826388 2.24594344 -2.60179872 91 92 93 94 95 96 -4.11825446 0.32555019 0.04807638 0.36315056 -0.02201095 1.44283650 97 98 99 100 101 102 -0.18568463 -2.41545830 -0.71525679 2.35543284 1.60287904 0.38667465 103 104 105 106 107 108 0.72407350 -2.87544429 -0.16216054 0.79753364 -2.00304041 -1.12640828 109 110 111 112 113 114 2.74947986 1.68508045 -0.64190744 0.19140225 0.95981464 1.68234083 115 116 117 118 119 120 3.68845327 -0.06954817 1.05808404 -0.90808206 -0.05121083 -3.30000141 121 122 123 124 125 126 -0.58078299 0.14302508 -1.75134728 1.74346528 -0.01453616 -1.40097954 127 128 129 130 131 132 1.08128283 0.53763768 -0.74165007 -0.75369655 1.28830985 0.94775268 133 134 135 136 137 138 2.61152235 -1.12287253 0.78351277 -0.33242659 1.10651333 -3.00558622 139 140 141 142 143 144 0.07103807 0.40843693 -2.26287460 0.08937541 -0.24140728 -1.16457104 145 146 147 148 149 150 0.64950980 1.00613751 0.95658926 0.12605008 -0.25243275 1.53264474 151 152 153 154 155 156 2.02543142 0.69229691 -0.85006636 0.79864021 -0.99451118 -3.16194549 > postscript(file="/var/www/rcomp/tmp/6f5zl1324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 156 Frequency = 1 lag(myerror, k = 1) myerror 0 1.01182046 NA 1 1.38639515 1.01182046 2 0.10892133 1.38639515 3 -1.06086479 0.10892133 4 1.47727022 -1.06086479 5 2.25545710 1.47727022 6 0.73643759 2.25545710 7 -0.57693018 0.73643759 8 -1.69901616 -0.57693018 9 2.20170956 -1.69901616 10 -0.32270673 2.20170956 11 -0.21558526 -0.32270673 12 -1.23687417 -0.21558526 13 -0.52230853 -1.23687417 14 -3.22336740 -0.52230853 15 -1.31826397 -3.22336740 16 -3.54093509 -1.31826397 17 -0.84709213 -3.54093509 18 1.82827179 -0.84709213 19 2.33793551 1.82827179 20 -0.95876716 2.33793551 21 0.28632722 -0.95876716 22 -0.86497405 0.28632722 23 -1.32683904 -0.86497405 24 -0.23713250 -1.32683904 25 -0.23102005 -0.23713250 26 1.28280943 -0.23102005 27 1.68147770 1.28280943 28 2.52424177 1.68147770 29 -1.60094003 2.52424177 30 -1.79684563 -1.60094003 31 0.54946971 -1.79684563 32 0.35356412 0.54946971 33 -0.56724782 0.35356412 34 1.04502691 -0.56724782 35 -1.56245143 1.04502691 36 0.88391699 -1.56245143 37 -0.69946776 0.88391699 38 0.72152519 -0.69946776 39 1.16842567 0.72152519 40 0.96274559 1.16842567 41 2.05934274 0.96274559 42 1.31517337 2.05934274 43 -1.12767470 1.31517337 44 -0.11488359 -1.12767470 45 -0.49208454 -0.11488359 46 -0.64445575 -0.49208454 47 -1.33243237 -0.64445575 48 1.98445574 -1.33243237 49 0.26800784 1.98445574 50 -0.07820892 0.26800784 51 0.18611432 -0.07820892 52 0.26530238 0.18611432 53 -1.14346568 0.26530238 54 -0.98015147 -1.14346568 55 -0.55915852 -0.98015147 56 -1.51377654 -0.55915852 57 1.79568308 -1.51377654 58 2.32713942 1.79568308 59 0.82713683 2.32713942 60 -2.54391751 0.82713683 61 0.34526481 -2.54391751 62 0.65419238 0.34526481 63 -0.38739532 0.65419238 64 -0.04999647 -0.38739532 65 -0.42847931 -0.04999647 66 0.04272670 -0.42847931 67 0.48476244 0.04272670 68 0.20547469 0.48476244 69 -0.89251770 0.20547469 70 -1.04179309 -0.89251770 71 0.55253467 -1.04179309 72 -1.25877565 0.55253467 73 -0.71086615 -1.25877565 74 -0.32015843 -0.71086615 75 3.73365417 -0.32015843 76 2.86796504 3.73365417 77 -0.51030585 2.86796504 78 0.24608840 -0.51030585 79 0.55811179 0.24608840 80 -1.75167313 0.55811179 81 0.20315632 -1.75167313 82 -0.81305591 0.20315632 83 -1.27310697 -0.81305591 84 -3.45774425 -1.27310697 85 0.79477862 -3.45774425 86 -1.97139531 0.79477862 87 2.20826388 -1.97139531 88 2.24594344 2.20826388 89 -2.60179872 2.24594344 90 -4.11825446 -2.60179872 91 0.32555019 -4.11825446 92 0.04807638 0.32555019 93 0.36315056 0.04807638 94 -0.02201095 0.36315056 95 1.44283650 -0.02201095 96 -0.18568463 1.44283650 97 -2.41545830 -0.18568463 98 -0.71525679 -2.41545830 99 2.35543284 -0.71525679 100 1.60287904 2.35543284 101 0.38667465 1.60287904 102 0.72407350 0.38667465 103 -2.87544429 0.72407350 104 -0.16216054 -2.87544429 105 0.79753364 -0.16216054 106 -2.00304041 0.79753364 107 -1.12640828 -2.00304041 108 2.74947986 -1.12640828 109 1.68508045 2.74947986 110 -0.64190744 1.68508045 111 0.19140225 -0.64190744 112 0.95981464 0.19140225 113 1.68234083 0.95981464 114 3.68845327 1.68234083 115 -0.06954817 3.68845327 116 1.05808404 -0.06954817 117 -0.90808206 1.05808404 118 -0.05121083 -0.90808206 119 -3.30000141 -0.05121083 120 -0.58078299 -3.30000141 121 0.14302508 -0.58078299 122 -1.75134728 0.14302508 123 1.74346528 -1.75134728 124 -0.01453616 1.74346528 125 -1.40097954 -0.01453616 126 1.08128283 -1.40097954 127 0.53763768 1.08128283 128 -0.74165007 0.53763768 129 -0.75369655 -0.74165007 130 1.28830985 -0.75369655 131 0.94775268 1.28830985 132 2.61152235 0.94775268 133 -1.12287253 2.61152235 134 0.78351277 -1.12287253 135 -0.33242659 0.78351277 136 1.10651333 -0.33242659 137 -3.00558622 1.10651333 138 0.07103807 -3.00558622 139 0.40843693 0.07103807 140 -2.26287460 0.40843693 141 0.08937541 -2.26287460 142 -0.24140728 0.08937541 143 -1.16457104 -0.24140728 144 0.64950980 -1.16457104 145 1.00613751 0.64950980 146 0.95658926 1.00613751 147 0.12605008 0.95658926 148 -0.25243275 0.12605008 149 1.53264474 -0.25243275 150 2.02543142 1.53264474 151 0.69229691 2.02543142 152 -0.85006636 0.69229691 153 0.79864021 -0.85006636 154 -0.99451118 0.79864021 155 -3.16194549 -0.99451118 156 NA -3.16194549 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 1.38639515 1.01182046 [2,] 0.10892133 1.38639515 [3,] -1.06086479 0.10892133 [4,] 1.47727022 -1.06086479 [5,] 2.25545710 1.47727022 [6,] 0.73643759 2.25545710 [7,] -0.57693018 0.73643759 [8,] -1.69901616 -0.57693018 [9,] 2.20170956 -1.69901616 [10,] -0.32270673 2.20170956 [11,] -0.21558526 -0.32270673 [12,] -1.23687417 -0.21558526 [13,] -0.52230853 -1.23687417 [14,] -3.22336740 -0.52230853 [15,] -1.31826397 -3.22336740 [16,] -3.54093509 -1.31826397 [17,] -0.84709213 -3.54093509 [18,] 1.82827179 -0.84709213 [19,] 2.33793551 1.82827179 [20,] -0.95876716 2.33793551 [21,] 0.28632722 -0.95876716 [22,] -0.86497405 0.28632722 [23,] -1.32683904 -0.86497405 [24,] -0.23713250 -1.32683904 [25,] -0.23102005 -0.23713250 [26,] 1.28280943 -0.23102005 [27,] 1.68147770 1.28280943 [28,] 2.52424177 1.68147770 [29,] -1.60094003 2.52424177 [30,] -1.79684563 -1.60094003 [31,] 0.54946971 -1.79684563 [32,] 0.35356412 0.54946971 [33,] -0.56724782 0.35356412 [34,] 1.04502691 -0.56724782 [35,] -1.56245143 1.04502691 [36,] 0.88391699 -1.56245143 [37,] -0.69946776 0.88391699 [38,] 0.72152519 -0.69946776 [39,] 1.16842567 0.72152519 [40,] 0.96274559 1.16842567 [41,] 2.05934274 0.96274559 [42,] 1.31517337 2.05934274 [43,] -1.12767470 1.31517337 [44,] -0.11488359 -1.12767470 [45,] -0.49208454 -0.11488359 [46,] -0.64445575 -0.49208454 [47,] -1.33243237 -0.64445575 [48,] 1.98445574 -1.33243237 [49,] 0.26800784 1.98445574 [50,] -0.07820892 0.26800784 [51,] 0.18611432 -0.07820892 [52,] 0.26530238 0.18611432 [53,] -1.14346568 0.26530238 [54,] -0.98015147 -1.14346568 [55,] -0.55915852 -0.98015147 [56,] -1.51377654 -0.55915852 [57,] 1.79568308 -1.51377654 [58,] 2.32713942 1.79568308 [59,] 0.82713683 2.32713942 [60,] -2.54391751 0.82713683 [61,] 0.34526481 -2.54391751 [62,] 0.65419238 0.34526481 [63,] -0.38739532 0.65419238 [64,] -0.04999647 -0.38739532 [65,] -0.42847931 -0.04999647 [66,] 0.04272670 -0.42847931 [67,] 0.48476244 0.04272670 [68,] 0.20547469 0.48476244 [69,] -0.89251770 0.20547469 [70,] -1.04179309 -0.89251770 [71,] 0.55253467 -1.04179309 [72,] -1.25877565 0.55253467 [73,] -0.71086615 -1.25877565 [74,] -0.32015843 -0.71086615 [75,] 3.73365417 -0.32015843 [76,] 2.86796504 3.73365417 [77,] -0.51030585 2.86796504 [78,] 0.24608840 -0.51030585 [79,] 0.55811179 0.24608840 [80,] -1.75167313 0.55811179 [81,] 0.20315632 -1.75167313 [82,] -0.81305591 0.20315632 [83,] -1.27310697 -0.81305591 [84,] -3.45774425 -1.27310697 [85,] 0.79477862 -3.45774425 [86,] -1.97139531 0.79477862 [87,] 2.20826388 -1.97139531 [88,] 2.24594344 2.20826388 [89,] -2.60179872 2.24594344 [90,] -4.11825446 -2.60179872 [91,] 0.32555019 -4.11825446 [92,] 0.04807638 0.32555019 [93,] 0.36315056 0.04807638 [94,] -0.02201095 0.36315056 [95,] 1.44283650 -0.02201095 [96,] -0.18568463 1.44283650 [97,] -2.41545830 -0.18568463 [98,] -0.71525679 -2.41545830 [99,] 2.35543284 -0.71525679 [100,] 1.60287904 2.35543284 [101,] 0.38667465 1.60287904 [102,] 0.72407350 0.38667465 [103,] -2.87544429 0.72407350 [104,] -0.16216054 -2.87544429 [105,] 0.79753364 -0.16216054 [106,] -2.00304041 0.79753364 [107,] -1.12640828 -2.00304041 [108,] 2.74947986 -1.12640828 [109,] 1.68508045 2.74947986 [110,] -0.64190744 1.68508045 [111,] 0.19140225 -0.64190744 [112,] 0.95981464 0.19140225 [113,] 1.68234083 0.95981464 [114,] 3.68845327 1.68234083 [115,] -0.06954817 3.68845327 [116,] 1.05808404 -0.06954817 [117,] -0.90808206 1.05808404 [118,] -0.05121083 -0.90808206 [119,] -3.30000141 -0.05121083 [120,] -0.58078299 -3.30000141 [121,] 0.14302508 -0.58078299 [122,] -1.75134728 0.14302508 [123,] 1.74346528 -1.75134728 [124,] -0.01453616 1.74346528 [125,] -1.40097954 -0.01453616 [126,] 1.08128283 -1.40097954 [127,] 0.53763768 1.08128283 [128,] -0.74165007 0.53763768 [129,] -0.75369655 -0.74165007 [130,] 1.28830985 -0.75369655 [131,] 0.94775268 1.28830985 [132,] 2.61152235 0.94775268 [133,] -1.12287253 2.61152235 [134,] 0.78351277 -1.12287253 [135,] -0.33242659 0.78351277 [136,] 1.10651333 -0.33242659 [137,] -3.00558622 1.10651333 [138,] 0.07103807 -3.00558622 [139,] 0.40843693 0.07103807 [140,] -2.26287460 0.40843693 [141,] 0.08937541 -2.26287460 [142,] -0.24140728 0.08937541 [143,] -1.16457104 -0.24140728 [144,] 0.64950980 -1.16457104 [145,] 1.00613751 0.64950980 [146,] 0.95658926 1.00613751 [147,] 0.12605008 0.95658926 [148,] -0.25243275 0.12605008 [149,] 1.53264474 -0.25243275 [150,] 2.02543142 1.53264474 [151,] 0.69229691 2.02543142 [152,] -0.85006636 0.69229691 [153,] 0.79864021 -0.85006636 [154,] -0.99451118 0.79864021 [155,] -3.16194549 -0.99451118 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 1.38639515 1.01182046 2 0.10892133 1.38639515 3 -1.06086479 0.10892133 4 1.47727022 -1.06086479 5 2.25545710 1.47727022 6 0.73643759 2.25545710 7 -0.57693018 0.73643759 8 -1.69901616 -0.57693018 9 2.20170956 -1.69901616 10 -0.32270673 2.20170956 11 -0.21558526 -0.32270673 12 -1.23687417 -0.21558526 13 -0.52230853 -1.23687417 14 -3.22336740 -0.52230853 15 -1.31826397 -3.22336740 16 -3.54093509 -1.31826397 17 -0.84709213 -3.54093509 18 1.82827179 -0.84709213 19 2.33793551 1.82827179 20 -0.95876716 2.33793551 21 0.28632722 -0.95876716 22 -0.86497405 0.28632722 23 -1.32683904 -0.86497405 24 -0.23713250 -1.32683904 25 -0.23102005 -0.23713250 26 1.28280943 -0.23102005 27 1.68147770 1.28280943 28 2.52424177 1.68147770 29 -1.60094003 2.52424177 30 -1.79684563 -1.60094003 31 0.54946971 -1.79684563 32 0.35356412 0.54946971 33 -0.56724782 0.35356412 34 1.04502691 -0.56724782 35 -1.56245143 1.04502691 36 0.88391699 -1.56245143 37 -0.69946776 0.88391699 38 0.72152519 -0.69946776 39 1.16842567 0.72152519 40 0.96274559 1.16842567 41 2.05934274 0.96274559 42 1.31517337 2.05934274 43 -1.12767470 1.31517337 44 -0.11488359 -1.12767470 45 -0.49208454 -0.11488359 46 -0.64445575 -0.49208454 47 -1.33243237 -0.64445575 48 1.98445574 -1.33243237 49 0.26800784 1.98445574 50 -0.07820892 0.26800784 51 0.18611432 -0.07820892 52 0.26530238 0.18611432 53 -1.14346568 0.26530238 54 -0.98015147 -1.14346568 55 -0.55915852 -0.98015147 56 -1.51377654 -0.55915852 57 1.79568308 -1.51377654 58 2.32713942 1.79568308 59 0.82713683 2.32713942 60 -2.54391751 0.82713683 61 0.34526481 -2.54391751 62 0.65419238 0.34526481 63 -0.38739532 0.65419238 64 -0.04999647 -0.38739532 65 -0.42847931 -0.04999647 66 0.04272670 -0.42847931 67 0.48476244 0.04272670 68 0.20547469 0.48476244 69 -0.89251770 0.20547469 70 -1.04179309 -0.89251770 71 0.55253467 -1.04179309 72 -1.25877565 0.55253467 73 -0.71086615 -1.25877565 74 -0.32015843 -0.71086615 75 3.73365417 -0.32015843 76 2.86796504 3.73365417 77 -0.51030585 2.86796504 78 0.24608840 -0.51030585 79 0.55811179 0.24608840 80 -1.75167313 0.55811179 81 0.20315632 -1.75167313 82 -0.81305591 0.20315632 83 -1.27310697 -0.81305591 84 -3.45774425 -1.27310697 85 0.79477862 -3.45774425 86 -1.97139531 0.79477862 87 2.20826388 -1.97139531 88 2.24594344 2.20826388 89 -2.60179872 2.24594344 90 -4.11825446 -2.60179872 91 0.32555019 -4.11825446 92 0.04807638 0.32555019 93 0.36315056 0.04807638 94 -0.02201095 0.36315056 95 1.44283650 -0.02201095 96 -0.18568463 1.44283650 97 -2.41545830 -0.18568463 98 -0.71525679 -2.41545830 99 2.35543284 -0.71525679 100 1.60287904 2.35543284 101 0.38667465 1.60287904 102 0.72407350 0.38667465 103 -2.87544429 0.72407350 104 -0.16216054 -2.87544429 105 0.79753364 -0.16216054 106 -2.00304041 0.79753364 107 -1.12640828 -2.00304041 108 2.74947986 -1.12640828 109 1.68508045 2.74947986 110 -0.64190744 1.68508045 111 0.19140225 -0.64190744 112 0.95981464 0.19140225 113 1.68234083 0.95981464 114 3.68845327 1.68234083 115 -0.06954817 3.68845327 116 1.05808404 -0.06954817 117 -0.90808206 1.05808404 118 -0.05121083 -0.90808206 119 -3.30000141 -0.05121083 120 -0.58078299 -3.30000141 121 0.14302508 -0.58078299 122 -1.75134728 0.14302508 123 1.74346528 -1.75134728 124 -0.01453616 1.74346528 125 -1.40097954 -0.01453616 126 1.08128283 -1.40097954 127 0.53763768 1.08128283 128 -0.74165007 0.53763768 129 -0.75369655 -0.74165007 130 1.28830985 -0.75369655 131 0.94775268 1.28830985 132 2.61152235 0.94775268 133 -1.12287253 2.61152235 134 0.78351277 -1.12287253 135 -0.33242659 0.78351277 136 1.10651333 -0.33242659 137 -3.00558622 1.10651333 138 0.07103807 -3.00558622 139 0.40843693 0.07103807 140 -2.26287460 0.40843693 141 0.08937541 -2.26287460 142 -0.24140728 0.08937541 143 -1.16457104 -0.24140728 144 0.64950980 -1.16457104 145 1.00613751 0.64950980 146 0.95658926 1.00613751 147 0.12605008 0.95658926 148 -0.25243275 0.12605008 149 1.53264474 -0.25243275 150 2.02543142 1.53264474 151 0.69229691 2.02543142 152 -0.85006636 0.69229691 153 0.79864021 -0.85006636 154 -0.99451118 0.79864021 155 -3.16194549 -0.99451118 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/7cdpf1324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/8l26j1324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/www/rcomp/tmp/9pvke1324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/www/rcomp/tmp/1067nl1324496235.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/11ymnu1324496235.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/12zckz1324496235.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/13od741324496235.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/14j6pv1324496235.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/15kfa61324496235.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/www/rcomp/tmp/16igq81324496236.tab") + } > > try(system("convert tmp/1ymo01324496235.ps tmp/1ymo01324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/2pbm81324496235.ps tmp/2pbm81324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/3ery21324496235.ps tmp/3ery21324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/4wdpp1324496235.ps tmp/4wdpp1324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/5zbs71324496235.ps tmp/5zbs71324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/6f5zl1324496235.ps tmp/6f5zl1324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/7cdpf1324496235.ps tmp/7cdpf1324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/8l26j1324496235.ps tmp/8l26j1324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/9pvke1324496235.ps tmp/9pvke1324496235.png",intern=TRUE)) character(0) > try(system("convert tmp/1067nl1324496235.ps tmp/1067nl1324496235.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 4.110 0.250 4.346