R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(611,639,630,586,695,552,619,681,421,307,754,690,644,643,608,651,691,627,634,731,475,337,803,722,590,724,627,696,825,677,656,785,412,352,839,729,696,641,695,638,762,635,721,854,418,367,824,687,601,676,740,691,683,594,729,731,386,331,706,715,657,653,642,643,718,654,632,731,392,344,792,852,649,629,685,617,715,715,629,916,531,357,917,828,708,858,775,785,1006,789,734,906,532,387,991,841,892,782,811,792,978,773,796,946,594,438,1023,868,791,760,779,852,1001,734,996,869,599,426,1138,1091),dim=c(1,120),dimnames=list(c('AantalFaillissementen'),1:120)) > y <- array(NA,dim=c(1,120),dimnames=list(c('AantalFaillissementen'),1:120)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Include Monthly Dummies' > par1 = '1' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x AantalFaillissementen M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 t 1 611 1 0 0 0 0 0 0 0 0 0 0 1 2 639 0 1 0 0 0 0 0 0 0 0 0 2 3 630 0 0 1 0 0 0 0 0 0 0 0 3 4 586 0 0 0 1 0 0 0 0 0 0 0 4 5 695 0 0 0 0 1 0 0 0 0 0 0 5 6 552 0 0 0 0 0 1 0 0 0 0 0 6 7 619 0 0 0 0 0 0 1 0 0 0 0 7 8 681 0 0 0 0 0 0 0 1 0 0 0 8 9 421 0 0 0 0 0 0 0 0 1 0 0 9 10 307 0 0 0 0 0 0 0 0 0 1 0 10 11 754 0 0 0 0 0 0 0 0 0 0 1 11 12 690 0 0 0 0 0 0 0 0 0 0 0 12 13 644 1 0 0 0 0 0 0 0 0 0 0 13 14 643 0 1 0 0 0 0 0 0 0 0 0 14 15 608 0 0 1 0 0 0 0 0 0 0 0 15 16 651 0 0 0 1 0 0 0 0 0 0 0 16 17 691 0 0 0 0 1 0 0 0 0 0 0 17 18 627 0 0 0 0 0 1 0 0 0 0 0 18 19 634 0 0 0 0 0 0 1 0 0 0 0 19 20 731 0 0 0 0 0 0 0 1 0 0 0 20 21 475 0 0 0 0 0 0 0 0 1 0 0 21 22 337 0 0 0 0 0 0 0 0 0 1 0 22 23 803 0 0 0 0 0 0 0 0 0 0 1 23 24 722 0 0 0 0 0 0 0 0 0 0 0 24 25 590 1 0 0 0 0 0 0 0 0 0 0 25 26 724 0 1 0 0 0 0 0 0 0 0 0 26 27 627 0 0 1 0 0 0 0 0 0 0 0 27 28 696 0 0 0 1 0 0 0 0 0 0 0 28 29 825 0 0 0 0 1 0 0 0 0 0 0 29 30 677 0 0 0 0 0 1 0 0 0 0 0 30 31 656 0 0 0 0 0 0 1 0 0 0 0 31 32 785 0 0 0 0 0 0 0 1 0 0 0 32 33 412 0 0 0 0 0 0 0 0 1 0 0 33 34 352 0 0 0 0 0 0 0 0 0 1 0 34 35 839 0 0 0 0 0 0 0 0 0 0 1 35 36 729 0 0 0 0 0 0 0 0 0 0 0 36 37 696 1 0 0 0 0 0 0 0 0 0 0 37 38 641 0 1 0 0 0 0 0 0 0 0 0 38 39 695 0 0 1 0 0 0 0 0 0 0 0 39 40 638 0 0 0 1 0 0 0 0 0 0 0 40 41 762 0 0 0 0 1 0 0 0 0 0 0 41 42 635 0 0 0 0 0 1 0 0 0 0 0 42 43 721 0 0 0 0 0 0 1 0 0 0 0 43 44 854 0 0 0 0 0 0 0 1 0 0 0 44 45 418 0 0 0 0 0 0 0 0 1 0 0 45 46 367 0 0 0 0 0 0 0 0 0 1 0 46 47 824 0 0 0 0 0 0 0 0 0 0 1 47 48 687 0 0 0 0 0 0 0 0 0 0 0 48 49 601 1 0 0 0 0 0 0 0 0 0 0 49 50 676 0 1 0 0 0 0 0 0 0 0 0 50 51 740 0 0 1 0 0 0 0 0 0 0 0 51 52 691 0 0 0 1 0 0 0 0 0 0 0 52 53 683 0 0 0 0 1 0 0 0 0 0 0 53 54 594 0 0 0 0 0 1 0 0 0 0 0 54 55 729 0 0 0 0 0 0 1 0 0 0 0 55 56 731 0 0 0 0 0 0 0 1 0 0 0 56 57 386 0 0 0 0 0 0 0 0 1 0 0 57 58 331 0 0 0 0 0 0 0 0 0 1 0 58 59 706 0 0 0 0 0 0 0 0 0 0 1 59 60 715 0 0 0 0 0 0 0 0 0 0 0 60 61 657 1 0 0 0 0 0 0 0 0 0 0 61 62 653 0 1 0 0 0 0 0 0 0 0 0 62 63 642 0 0 1 0 0 0 0 0 0 0 0 63 64 643 0 0 0 1 0 0 0 0 0 0 0 64 65 718 0 0 0 0 1 0 0 0 0 0 0 65 66 654 0 0 0 0 0 1 0 0 0 0 0 66 67 632 0 0 0 0 0 0 1 0 0 0 0 67 68 731 0 0 0 0 0 0 0 1 0 0 0 68 69 392 0 0 0 0 0 0 0 0 1 0 0 69 70 344 0 0 0 0 0 0 0 0 0 1 0 70 71 792 0 0 0 0 0 0 0 0 0 0 1 71 72 852 0 0 0 0 0 0 0 0 0 0 0 72 73 649 1 0 0 0 0 0 0 0 0 0 0 73 74 629 0 1 0 0 0 0 0 0 0 0 0 74 75 685 0 0 1 0 0 0 0 0 0 0 0 75 76 617 0 0 0 1 0 0 0 0 0 0 0 76 77 715 0 0 0 0 1 0 0 0 0 0 0 77 78 715 0 0 0 0 0 1 0 0 0 0 0 78 79 629 0 0 0 0 0 0 1 0 0 0 0 79 80 916 0 0 0 0 0 0 0 1 0 0 0 80 81 531 0 0 0 0 0 0 0 0 1 0 0 81 82 357 0 0 0 0 0 0 0 0 0 1 0 82 83 917 0 0 0 0 0 0 0 0 0 0 1 83 84 828 0 0 0 0 0 0 0 0 0 0 0 84 85 708 1 0 0 0 0 0 0 0 0 0 0 85 86 858 0 1 0 0 0 0 0 0 0 0 0 86 87 775 0 0 1 0 0 0 0 0 0 0 0 87 88 785 0 0 0 1 0 0 0 0 0 0 0 88 89 1006 0 0 0 0 1 0 0 0 0 0 0 89 90 789 0 0 0 0 0 1 0 0 0 0 0 90 91 734 0 0 0 0 0 0 1 0 0 0 0 91 92 906 0 0 0 0 0 0 0 1 0 0 0 92 93 532 0 0 0 0 0 0 0 0 1 0 0 93 94 387 0 0 0 0 0 0 0 0 0 1 0 94 95 991 0 0 0 0 0 0 0 0 0 0 1 95 96 841 0 0 0 0 0 0 0 0 0 0 0 96 97 892 1 0 0 0 0 0 0 0 0 0 0 97 98 782 0 1 0 0 0 0 0 0 0 0 0 98 99 811 0 0 1 0 0 0 0 0 0 0 0 99 100 792 0 0 0 1 0 0 0 0 0 0 0 100 101 978 0 0 0 0 1 0 0 0 0 0 0 101 102 773 0 0 0 0 0 1 0 0 0 0 0 102 103 796 0 0 0 0 0 0 1 0 0 0 0 103 104 946 0 0 0 0 0 0 0 1 0 0 0 104 105 594 0 0 0 0 0 0 0 0 1 0 0 105 106 438 0 0 0 0 0 0 0 0 0 1 0 106 107 1023 0 0 0 0 0 0 0 0 0 0 1 107 108 868 0 0 0 0 0 0 0 0 0 0 0 108 109 791 1 0 0 0 0 0 0 0 0 0 0 109 110 760 0 1 0 0 0 0 0 0 0 0 0 110 111 779 0 0 1 0 0 0 0 0 0 0 0 111 112 852 0 0 0 1 0 0 0 0 0 0 0 112 113 1001 0 0 0 0 1 0 0 0 0 0 0 113 114 734 0 0 0 0 0 1 0 0 0 0 0 114 115 996 0 0 0 0 0 0 1 0 0 0 0 115 116 869 0 0 0 0 0 0 0 1 0 0 0 116 117 599 0 0 0 0 0 0 0 0 1 0 0 117 118 426 0 0 0 0 0 0 0 0 0 1 0 118 119 1138 0 0 0 0 0 0 0 0 0 0 1 119 120 1091 0 0 0 0 0 0 0 0 0 0 0 120 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) M1 M2 M3 M4 M5 667.786 -95.981 -81.419 -84.757 -90.895 19.367 M6 M7 M8 M9 M10 M11 -115.071 -77.510 20.852 -320.186 -433.624 78.438 t 2.038 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -160.471 -37.468 -2.293 41.018 178.643 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 667.7861 23.6275 28.263 < 2e-16 *** M1 -95.9810 29.3059 -3.275 0.00142 ** M2 -81.4191 29.2951 -2.779 0.00644 ** M3 -84.7572 29.2854 -2.894 0.00461 ** M4 -90.8953 29.2767 -3.105 0.00244 ** M5 19.3666 29.2690 0.662 0.50960 M6 -115.0715 29.2623 -3.932 0.00015 *** M7 -77.5096 29.2567 -2.649 0.00929 ** M8 20.8524 29.2521 0.713 0.47749 M9 -320.1857 29.2485 -10.947 < 2e-16 *** M10 -433.6238 29.2459 -14.827 < 2e-16 *** M11 78.4381 29.2444 2.682 0.00848 ** t 2.0381 0.1732 11.768 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 65.39 on 107 degrees of freedom Multiple R-squared: 0.8635, Adjusted R-squared: 0.8482 F-statistic: 56.42 on 12 and 107 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 6.876036e-02 1.375207e-01 0.9312396 [2,] 2.544978e-02 5.089956e-02 0.9745502 [3,] 2.293043e-02 4.586087e-02 0.9770696 [4,] 8.053683e-03 1.610737e-02 0.9919463 [5,] 3.248410e-03 6.496820e-03 0.9967516 [6,] 1.456352e-03 2.912704e-03 0.9985436 [7,] 4.776590e-04 9.553180e-04 0.9995223 [8,] 1.657516e-04 3.315031e-04 0.9998342 [9,] 4.727046e-05 9.454092e-05 0.9999527 [10,] 3.310021e-04 6.620043e-04 0.9996690 [11,] 3.533027e-04 7.066055e-04 0.9996467 [12,] 1.807448e-04 3.614895e-04 0.9998193 [13,] 1.397769e-04 2.795539e-04 0.9998602 [14,] 6.477495e-04 1.295499e-03 0.9993523 [15,] 4.646633e-04 9.293266e-04 0.9995353 [16,] 2.405861e-04 4.811723e-04 0.9997594 [17,] 1.345481e-04 2.690962e-04 0.9998655 [18,] 3.855120e-04 7.710239e-04 0.9996145 [19,] 2.415175e-04 4.830351e-04 0.9997585 [20,] 1.273630e-04 2.547260e-04 0.9998726 [21,] 6.670051e-05 1.334010e-04 0.9999333 [22,] 4.272328e-05 8.544656e-05 0.9999573 [23,] 1.321334e-04 2.642668e-04 0.9998679 [24,] 8.234255e-05 1.646851e-04 0.9999177 [25,] 9.116897e-05 1.823379e-04 0.9999088 [26,] 5.294150e-05 1.058830e-04 0.9999471 [27,] 3.479830e-05 6.959659e-05 0.9999652 [28,] 3.200170e-05 6.400340e-05 0.9999680 [29,] 9.081454e-05 1.816291e-04 0.9999092 [30,] 1.320694e-04 2.641387e-04 0.9998679 [31,] 1.379144e-04 2.758288e-04 0.9998621 [32,] 8.796280e-05 1.759256e-04 0.9999120 [33,] 1.194833e-04 2.389665e-04 0.9998805 [34,] 2.273053e-04 4.546107e-04 0.9997727 [35,] 1.820104e-04 3.640209e-04 0.9998180 [36,] 3.416296e-04 6.832592e-04 0.9996584 [37,] 2.857794e-04 5.715589e-04 0.9997142 [38,] 8.984521e-04 1.796904e-03 0.9991015 [39,] 9.728675e-04 1.945735e-03 0.9990271 [40,] 1.198688e-03 2.397377e-03 0.9988013 [41,] 1.294181e-03 2.588363e-03 0.9987058 [42,] 1.603767e-03 3.207534e-03 0.9983962 [43,] 1.765073e-03 3.530145e-03 0.9982349 [44,] 7.670865e-03 1.534173e-02 0.9923291 [45,] 5.298377e-03 1.059675e-02 0.9947016 [46,] 3.513209e-03 7.026418e-03 0.9964868 [47,] 2.643844e-03 5.287687e-03 0.9973562 [48,] 1.986740e-03 3.973480e-03 0.9980133 [49,] 1.373329e-03 2.746658e-03 0.9986267 [50,] 1.241667e-03 2.483333e-03 0.9987583 [51,] 8.044604e-04 1.608921e-03 0.9991955 [52,] 7.138920e-04 1.427784e-03 0.9992861 [53,] 5.850324e-04 1.170065e-03 0.9994150 [54,] 4.828021e-04 9.656043e-04 0.9995172 [55,] 3.580669e-04 7.161337e-04 0.9996419 [56,] 3.769448e-04 7.538897e-04 0.9996231 [57,] 1.168843e-03 2.337685e-03 0.9988312 [58,] 8.067050e-04 1.613410e-03 0.9991933 [59,] 8.447711e-04 1.689542e-03 0.9991552 [60,] 5.074609e-04 1.014922e-03 0.9994925 [61,] 6.933326e-04 1.386665e-03 0.9993067 [62,] 4.754894e-03 9.509788e-03 0.9952451 [63,] 4.517309e-03 9.034618e-03 0.9954827 [64,] 1.221156e-02 2.442312e-02 0.9877884 [65,] 3.173224e-02 6.346447e-02 0.9682678 [66,] 3.214695e-02 6.429390e-02 0.9678531 [67,] 2.246752e-02 4.493505e-02 0.9775325 [68,] 2.995306e-02 5.990613e-02 0.9700469 [69,] 2.677080e-02 5.354159e-02 0.9732292 [70,] 2.917059e-02 5.834119e-02 0.9708294 [71,] 1.006922e-01 2.013845e-01 0.8993078 [72,] 8.647043e-02 1.729409e-01 0.9135296 [73,] 7.739998e-02 1.548000e-01 0.9226000 [74,] 1.834555e-01 3.669109e-01 0.8165445 [75,] 2.220485e-01 4.440970e-01 0.7779515 [76,] 2.442365e-01 4.884730e-01 0.7557635 [77,] 2.262314e-01 4.524629e-01 0.7737686 [78,] 1.737183e-01 3.474366e-01 0.8262817 [79,] 1.294674e-01 2.589349e-01 0.8705326 [80,] 1.154192e-01 2.308384e-01 0.8845808 [81,] 1.136714e-01 2.273428e-01 0.8863286 [82,] 2.056871e-01 4.113741e-01 0.7943129 [83,] 1.691700e-01 3.383401e-01 0.8308300 [84,] 1.530616e-01 3.061232e-01 0.8469384 [85,] 1.018245e-01 2.036490e-01 0.8981755 [86,] 7.764600e-02 1.552920e-01 0.9223540 [87,] 7.541397e-02 1.508279e-01 0.9245860 [88,] 1.061142e-01 2.122284e-01 0.8938858 [89,] 1.788019e-01 3.576039e-01 0.8211981 > postscript(file="/var/wessaorg/rcomp/tmp/1i5jh1324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/2uru81324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/3j0k71324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/4lgml1324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/563gh1324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 120 Frequency = 1 1 2 3 4 5 6 37.1568182 48.5568182 40.8568182 0.9568182 -2.3431818 -12.9431818 7 8 9 10 11 12 14.4568182 -23.9431818 55.0568182 52.4568182 -14.6431818 -2.2431818 13 14 15 16 17 18 45.6997475 28.0997475 -5.6002525 41.4997475 -30.8002525 37.5997475 19 20 21 22 23 24 4.9997475 1.5997475 84.5997475 57.9997475 9.8997475 5.2997475 25 26 27 28 29 30 -32.7573232 84.6426768 -11.0573232 62.0426768 78.7426768 63.1426768 31 32 33 34 35 36 2.5426768 31.1426768 -2.8573232 48.5426768 21.4426768 -12.1573232 37 38 39 40 41 42 48.7856061 -22.8143939 32.4856061 -20.4143939 -8.7143939 -3.3143939 43 44 45 46 47 48 43.0856061 75.6856061 -21.3143939 39.0856061 -18.0143939 -78.6143939 49 50 51 52 53 54 -70.6714646 -12.2714646 53.0285354 8.1285354 -112.1714646 -68.7714646 55 56 57 58 59 60 26.6285354 -71.7714646 -77.7714646 -21.3714646 -160.4714646 -75.0714646 61 62 63 64 65 66 -39.1285354 -59.7285354 -69.4285354 -64.3285354 -101.6285354 -33.2285354 67 68 69 70 71 72 -94.8285354 -96.2285354 -96.2285354 -32.8285354 -98.9285354 37.4714646 73 74 75 76 77 78 -71.5856061 -108.1856061 -50.8856061 -114.7856061 -129.0856061 3.3143939 79 80 81 82 83 84 -122.2856061 64.3143939 18.3143939 -44.2856061 1.6143939 -10.9856061 85 86 87 88 89 90 -37.0426768 96.3573232 14.6573232 28.7573232 137.4573232 52.8573232 91 92 93 94 95 96 -41.7426768 29.8573232 -5.1426768 -38.7426768 51.1573232 -22.4426768 97 98 99 100 101 102 122.5002525 -4.0997475 26.2002525 11.3002525 85.0002525 12.4002525 103 104 105 106 107 108 -4.1997475 45.4002525 32.4002525 -12.1997475 58.7002525 -19.8997475 109 110 111 112 113 114 -2.9568182 -50.5568182 -30.2568182 46.8431818 83.5431818 -51.0568182 115 116 117 118 119 120 171.3431818 -56.0568182 12.9431818 -48.6568182 149.2431818 178.6431818 > postscript(file="/var/wessaorg/rcomp/tmp/69ob41324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 120 Frequency = 1 lag(myerror, k = 1) myerror 0 37.1568182 NA 1 48.5568182 37.1568182 2 40.8568182 48.5568182 3 0.9568182 40.8568182 4 -2.3431818 0.9568182 5 -12.9431818 -2.3431818 6 14.4568182 -12.9431818 7 -23.9431818 14.4568182 8 55.0568182 -23.9431818 9 52.4568182 55.0568182 10 -14.6431818 52.4568182 11 -2.2431818 -14.6431818 12 45.6997475 -2.2431818 13 28.0997475 45.6997475 14 -5.6002525 28.0997475 15 41.4997475 -5.6002525 16 -30.8002525 41.4997475 17 37.5997475 -30.8002525 18 4.9997475 37.5997475 19 1.5997475 4.9997475 20 84.5997475 1.5997475 21 57.9997475 84.5997475 22 9.8997475 57.9997475 23 5.2997475 9.8997475 24 -32.7573232 5.2997475 25 84.6426768 -32.7573232 26 -11.0573232 84.6426768 27 62.0426768 -11.0573232 28 78.7426768 62.0426768 29 63.1426768 78.7426768 30 2.5426768 63.1426768 31 31.1426768 2.5426768 32 -2.8573232 31.1426768 33 48.5426768 -2.8573232 34 21.4426768 48.5426768 35 -12.1573232 21.4426768 36 48.7856061 -12.1573232 37 -22.8143939 48.7856061 38 32.4856061 -22.8143939 39 -20.4143939 32.4856061 40 -8.7143939 -20.4143939 41 -3.3143939 -8.7143939 42 43.0856061 -3.3143939 43 75.6856061 43.0856061 44 -21.3143939 75.6856061 45 39.0856061 -21.3143939 46 -18.0143939 39.0856061 47 -78.6143939 -18.0143939 48 -70.6714646 -78.6143939 49 -12.2714646 -70.6714646 50 53.0285354 -12.2714646 51 8.1285354 53.0285354 52 -112.1714646 8.1285354 53 -68.7714646 -112.1714646 54 26.6285354 -68.7714646 55 -71.7714646 26.6285354 56 -77.7714646 -71.7714646 57 -21.3714646 -77.7714646 58 -160.4714646 -21.3714646 59 -75.0714646 -160.4714646 60 -39.1285354 -75.0714646 61 -59.7285354 -39.1285354 62 -69.4285354 -59.7285354 63 -64.3285354 -69.4285354 64 -101.6285354 -64.3285354 65 -33.2285354 -101.6285354 66 -94.8285354 -33.2285354 67 -96.2285354 -94.8285354 68 -96.2285354 -96.2285354 69 -32.8285354 -96.2285354 70 -98.9285354 -32.8285354 71 37.4714646 -98.9285354 72 -71.5856061 37.4714646 73 -108.1856061 -71.5856061 74 -50.8856061 -108.1856061 75 -114.7856061 -50.8856061 76 -129.0856061 -114.7856061 77 3.3143939 -129.0856061 78 -122.2856061 3.3143939 79 64.3143939 -122.2856061 80 18.3143939 64.3143939 81 -44.2856061 18.3143939 82 1.6143939 -44.2856061 83 -10.9856061 1.6143939 84 -37.0426768 -10.9856061 85 96.3573232 -37.0426768 86 14.6573232 96.3573232 87 28.7573232 14.6573232 88 137.4573232 28.7573232 89 52.8573232 137.4573232 90 -41.7426768 52.8573232 91 29.8573232 -41.7426768 92 -5.1426768 29.8573232 93 -38.7426768 -5.1426768 94 51.1573232 -38.7426768 95 -22.4426768 51.1573232 96 122.5002525 -22.4426768 97 -4.0997475 122.5002525 98 26.2002525 -4.0997475 99 11.3002525 26.2002525 100 85.0002525 11.3002525 101 12.4002525 85.0002525 102 -4.1997475 12.4002525 103 45.4002525 -4.1997475 104 32.4002525 45.4002525 105 -12.1997475 32.4002525 106 58.7002525 -12.1997475 107 -19.8997475 58.7002525 108 -2.9568182 -19.8997475 109 -50.5568182 -2.9568182 110 -30.2568182 -50.5568182 111 46.8431818 -30.2568182 112 83.5431818 46.8431818 113 -51.0568182 83.5431818 114 171.3431818 -51.0568182 115 -56.0568182 171.3431818 116 12.9431818 -56.0568182 117 -48.6568182 12.9431818 118 149.2431818 -48.6568182 119 178.6431818 149.2431818 120 NA 178.6431818 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 48.5568182 37.1568182 [2,] 40.8568182 48.5568182 [3,] 0.9568182 40.8568182 [4,] -2.3431818 0.9568182 [5,] -12.9431818 -2.3431818 [6,] 14.4568182 -12.9431818 [7,] -23.9431818 14.4568182 [8,] 55.0568182 -23.9431818 [9,] 52.4568182 55.0568182 [10,] -14.6431818 52.4568182 [11,] -2.2431818 -14.6431818 [12,] 45.6997475 -2.2431818 [13,] 28.0997475 45.6997475 [14,] -5.6002525 28.0997475 [15,] 41.4997475 -5.6002525 [16,] -30.8002525 41.4997475 [17,] 37.5997475 -30.8002525 [18,] 4.9997475 37.5997475 [19,] 1.5997475 4.9997475 [20,] 84.5997475 1.5997475 [21,] 57.9997475 84.5997475 [22,] 9.8997475 57.9997475 [23,] 5.2997475 9.8997475 [24,] -32.7573232 5.2997475 [25,] 84.6426768 -32.7573232 [26,] -11.0573232 84.6426768 [27,] 62.0426768 -11.0573232 [28,] 78.7426768 62.0426768 [29,] 63.1426768 78.7426768 [30,] 2.5426768 63.1426768 [31,] 31.1426768 2.5426768 [32,] -2.8573232 31.1426768 [33,] 48.5426768 -2.8573232 [34,] 21.4426768 48.5426768 [35,] -12.1573232 21.4426768 [36,] 48.7856061 -12.1573232 [37,] -22.8143939 48.7856061 [38,] 32.4856061 -22.8143939 [39,] -20.4143939 32.4856061 [40,] -8.7143939 -20.4143939 [41,] -3.3143939 -8.7143939 [42,] 43.0856061 -3.3143939 [43,] 75.6856061 43.0856061 [44,] -21.3143939 75.6856061 [45,] 39.0856061 -21.3143939 [46,] -18.0143939 39.0856061 [47,] -78.6143939 -18.0143939 [48,] -70.6714646 -78.6143939 [49,] -12.2714646 -70.6714646 [50,] 53.0285354 -12.2714646 [51,] 8.1285354 53.0285354 [52,] -112.1714646 8.1285354 [53,] -68.7714646 -112.1714646 [54,] 26.6285354 -68.7714646 [55,] -71.7714646 26.6285354 [56,] -77.7714646 -71.7714646 [57,] -21.3714646 -77.7714646 [58,] -160.4714646 -21.3714646 [59,] -75.0714646 -160.4714646 [60,] -39.1285354 -75.0714646 [61,] -59.7285354 -39.1285354 [62,] -69.4285354 -59.7285354 [63,] -64.3285354 -69.4285354 [64,] -101.6285354 -64.3285354 [65,] -33.2285354 -101.6285354 [66,] -94.8285354 -33.2285354 [67,] -96.2285354 -94.8285354 [68,] -96.2285354 -96.2285354 [69,] -32.8285354 -96.2285354 [70,] -98.9285354 -32.8285354 [71,] 37.4714646 -98.9285354 [72,] -71.5856061 37.4714646 [73,] -108.1856061 -71.5856061 [74,] -50.8856061 -108.1856061 [75,] -114.7856061 -50.8856061 [76,] -129.0856061 -114.7856061 [77,] 3.3143939 -129.0856061 [78,] -122.2856061 3.3143939 [79,] 64.3143939 -122.2856061 [80,] 18.3143939 64.3143939 [81,] -44.2856061 18.3143939 [82,] 1.6143939 -44.2856061 [83,] -10.9856061 1.6143939 [84,] -37.0426768 -10.9856061 [85,] 96.3573232 -37.0426768 [86,] 14.6573232 96.3573232 [87,] 28.7573232 14.6573232 [88,] 137.4573232 28.7573232 [89,] 52.8573232 137.4573232 [90,] -41.7426768 52.8573232 [91,] 29.8573232 -41.7426768 [92,] -5.1426768 29.8573232 [93,] -38.7426768 -5.1426768 [94,] 51.1573232 -38.7426768 [95,] -22.4426768 51.1573232 [96,] 122.5002525 -22.4426768 [97,] -4.0997475 122.5002525 [98,] 26.2002525 -4.0997475 [99,] 11.3002525 26.2002525 [100,] 85.0002525 11.3002525 [101,] 12.4002525 85.0002525 [102,] -4.1997475 12.4002525 [103,] 45.4002525 -4.1997475 [104,] 32.4002525 45.4002525 [105,] -12.1997475 32.4002525 [106,] 58.7002525 -12.1997475 [107,] -19.8997475 58.7002525 [108,] -2.9568182 -19.8997475 [109,] -50.5568182 -2.9568182 [110,] -30.2568182 -50.5568182 [111,] 46.8431818 -30.2568182 [112,] 83.5431818 46.8431818 [113,] -51.0568182 83.5431818 [114,] 171.3431818 -51.0568182 [115,] -56.0568182 171.3431818 [116,] 12.9431818 -56.0568182 [117,] -48.6568182 12.9431818 [118,] 149.2431818 -48.6568182 [119,] 178.6431818 149.2431818 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 48.5568182 37.1568182 2 40.8568182 48.5568182 3 0.9568182 40.8568182 4 -2.3431818 0.9568182 5 -12.9431818 -2.3431818 6 14.4568182 -12.9431818 7 -23.9431818 14.4568182 8 55.0568182 -23.9431818 9 52.4568182 55.0568182 10 -14.6431818 52.4568182 11 -2.2431818 -14.6431818 12 45.6997475 -2.2431818 13 28.0997475 45.6997475 14 -5.6002525 28.0997475 15 41.4997475 -5.6002525 16 -30.8002525 41.4997475 17 37.5997475 -30.8002525 18 4.9997475 37.5997475 19 1.5997475 4.9997475 20 84.5997475 1.5997475 21 57.9997475 84.5997475 22 9.8997475 57.9997475 23 5.2997475 9.8997475 24 -32.7573232 5.2997475 25 84.6426768 -32.7573232 26 -11.0573232 84.6426768 27 62.0426768 -11.0573232 28 78.7426768 62.0426768 29 63.1426768 78.7426768 30 2.5426768 63.1426768 31 31.1426768 2.5426768 32 -2.8573232 31.1426768 33 48.5426768 -2.8573232 34 21.4426768 48.5426768 35 -12.1573232 21.4426768 36 48.7856061 -12.1573232 37 -22.8143939 48.7856061 38 32.4856061 -22.8143939 39 -20.4143939 32.4856061 40 -8.7143939 -20.4143939 41 -3.3143939 -8.7143939 42 43.0856061 -3.3143939 43 75.6856061 43.0856061 44 -21.3143939 75.6856061 45 39.0856061 -21.3143939 46 -18.0143939 39.0856061 47 -78.6143939 -18.0143939 48 -70.6714646 -78.6143939 49 -12.2714646 -70.6714646 50 53.0285354 -12.2714646 51 8.1285354 53.0285354 52 -112.1714646 8.1285354 53 -68.7714646 -112.1714646 54 26.6285354 -68.7714646 55 -71.7714646 26.6285354 56 -77.7714646 -71.7714646 57 -21.3714646 -77.7714646 58 -160.4714646 -21.3714646 59 -75.0714646 -160.4714646 60 -39.1285354 -75.0714646 61 -59.7285354 -39.1285354 62 -69.4285354 -59.7285354 63 -64.3285354 -69.4285354 64 -101.6285354 -64.3285354 65 -33.2285354 -101.6285354 66 -94.8285354 -33.2285354 67 -96.2285354 -94.8285354 68 -96.2285354 -96.2285354 69 -32.8285354 -96.2285354 70 -98.9285354 -32.8285354 71 37.4714646 -98.9285354 72 -71.5856061 37.4714646 73 -108.1856061 -71.5856061 74 -50.8856061 -108.1856061 75 -114.7856061 -50.8856061 76 -129.0856061 -114.7856061 77 3.3143939 -129.0856061 78 -122.2856061 3.3143939 79 64.3143939 -122.2856061 80 18.3143939 64.3143939 81 -44.2856061 18.3143939 82 1.6143939 -44.2856061 83 -10.9856061 1.6143939 84 -37.0426768 -10.9856061 85 96.3573232 -37.0426768 86 14.6573232 96.3573232 87 28.7573232 14.6573232 88 137.4573232 28.7573232 89 52.8573232 137.4573232 90 -41.7426768 52.8573232 91 29.8573232 -41.7426768 92 -5.1426768 29.8573232 93 -38.7426768 -5.1426768 94 51.1573232 -38.7426768 95 -22.4426768 51.1573232 96 122.5002525 -22.4426768 97 -4.0997475 122.5002525 98 26.2002525 -4.0997475 99 11.3002525 26.2002525 100 85.0002525 11.3002525 101 12.4002525 85.0002525 102 -4.1997475 12.4002525 103 45.4002525 -4.1997475 104 32.4002525 45.4002525 105 -12.1997475 32.4002525 106 58.7002525 -12.1997475 107 -19.8997475 58.7002525 108 -2.9568182 -19.8997475 109 -50.5568182 -2.9568182 110 -30.2568182 -50.5568182 111 46.8431818 -30.2568182 112 83.5431818 46.8431818 113 -51.0568182 83.5431818 114 171.3431818 -51.0568182 115 -56.0568182 171.3431818 116 12.9431818 -56.0568182 117 -48.6568182 12.9431818 118 149.2431818 -48.6568182 119 178.6431818 149.2431818 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/745n21324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/840pm1324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/969411324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/wessaorg/rcomp/tmp/100y9j1324592746.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/11zurk1324592746.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/12ae5h1324592746.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/13imzs1324592746.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/14aawf1324592746.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/15gkhk1324592746.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/16l67r1324592746.tab") + } > > try(system("convert tmp/1i5jh1324592746.ps tmp/1i5jh1324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/2uru81324592746.ps tmp/2uru81324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/3j0k71324592746.ps tmp/3j0k71324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/4lgml1324592746.ps tmp/4lgml1324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/563gh1324592746.ps tmp/563gh1324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/69ob41324592746.ps tmp/69ob41324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/745n21324592746.ps tmp/745n21324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/840pm1324592746.ps tmp/840pm1324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/969411324592746.ps tmp/969411324592746.png",intern=TRUE)) character(0) > try(system("convert tmp/100y9j1324592746.ps tmp/100y9j1324592746.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 4.020 0.601 4.645