R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(631.923 + ,9.911 + ,58608 + ,654.294 + ,8.915 + ,46865 + ,671.833 + ,9.452 + ,51378 + ,586.840 + ,9.112 + ,46235 + ,600.969 + ,8.472 + ,47206 + ,625.568 + ,8.230 + ,45382 + ,558.110 + ,8.384 + ,41227 + ,630.577 + ,8.625 + ,33795 + ,628.654 + ,8.221 + ,31295 + ,603.184 + ,8.649 + ,42625 + ,656.255 + ,8.625 + ,33625 + ,600.730 + ,10.443 + ,21538 + ,670.326 + ,10.357 + ,56421 + ,678.423 + ,8.586 + ,53152 + ,641.502 + ,8.892 + ,53536 + ,625.311 + ,8.329 + ,52408 + ,628.177 + ,8.101 + ,41454 + ,589.767 + ,7.922 + ,38271 + ,582.471 + ,8.120 + ,35306 + ,636.248 + ,7.838 + ,26414 + ,599.885 + ,7.735 + ,31917 + ,621.694 + ,8.406 + ,38030 + ,637.406 + ,8.209 + ,27534 + ,595.994 + ,9.451 + ,18387 + ,696.308 + ,10.041 + ,50556 + ,674.201 + ,9.411 + ,43901 + ,648.861 + ,10.405 + ,48572 + ,649.605 + ,8.467 + ,43899 + ,672.392 + ,8.464 + ,37532 + ,598.396 + ,8.102 + ,40357 + ,613.177 + ,7.627 + ,35489 + ,638.104 + ,7.513 + ,29027 + ,615.632 + ,7.510 + ,34485 + ,634.465 + ,8.291 + ,42598 + ,638.686 + ,8.064 + ,30306 + ,604.243 + ,9.383 + ,26451 + ,706.669 + ,9.706 + ,47460 + ,677.185 + ,8.579 + ,50104 + ,644.328 + ,9.474 + ,61465 + ,664.825 + ,8.318 + ,53726 + ,605.707 + ,8.213 + ,39477 + ,600.136 + ,8.059 + ,43895 + ,612.166 + ,9.111 + ,31481 + ,599.659 + ,7.708 + ,29896 + ,634.210 + ,7.680 + ,33842 + ,618.234 + ,8.014 + ,39120 + ,613.576 + ,8.007 + ,33702 + ,627.200 + ,8.718 + ,25094 + ,668.973 + ,9.486 + ,51442 + ,651.479 + ,9.113 + ,45594 + ,619.661 + ,9.025 + ,52518 + ,644.260 + ,8.476 + ,48564 + ,579.936 + ,7.952 + ,41745 + ,601.752 + ,7.759 + ,49585 + ,595.376 + ,7.835 + ,32747 + ,588.902 + ,7.600 + ,33379 + ,634.341 + ,7.651 + ,35645 + ,594.305 + ,8.319 + ,37034 + ,606.200 + ,8.812 + ,35681 + ,610.926 + ,8.630 + ,20972) + ,dim=c(3 + ,60) + ,dimnames=list(c('WERKLOZEN' + ,'OVERLIJDENS' + ,'INSCHRIJVINGEN') + ,1:60)) > y <- array(NA,dim=c(3,60),dimnames=list(c('WERKLOZEN','OVERLIJDENS','INSCHRIJVINGEN'),1:60)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > library(lattice) > library(lmtest) Loading required package: zoo > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x WERKLOZEN OVERLIJDENS INSCHRIJVINGEN 1 631.923 9.911 58608 2 654.294 8.915 46865 3 671.833 9.452 51378 4 586.840 9.112 46235 5 600.969 8.472 47206 6 625.568 8.230 45382 7 558.110 8.384 41227 8 630.577 8.625 33795 9 628.654 8.221 31295 10 603.184 8.649 42625 11 656.255 8.625 33625 12 600.730 10.443 21538 13 670.326 10.357 56421 14 678.423 8.586 53152 15 641.502 8.892 53536 16 625.311 8.329 52408 17 628.177 8.101 41454 18 589.767 7.922 38271 19 582.471 8.120 35306 20 636.248 7.838 26414 21 599.885 7.735 31917 22 621.694 8.406 38030 23 637.406 8.209 27534 24 595.994 9.451 18387 25 696.308 10.041 50556 26 674.201 9.411 43901 27 648.861 10.405 48572 28 649.605 8.467 43899 29 672.392 8.464 37532 30 598.396 8.102 40357 31 613.177 7.627 35489 32 638.104 7.513 29027 33 615.632 7.510 34485 34 634.465 8.291 42598 35 638.686 8.064 30306 36 604.243 9.383 26451 37 706.669 9.706 47460 38 677.185 8.579 50104 39 644.328 9.474 61465 40 664.825 8.318 53726 41 605.707 8.213 39477 42 600.136 8.059 43895 43 612.166 9.111 31481 44 599.659 7.708 29896 45 634.210 7.680 33842 46 618.234 8.014 39120 47 613.576 8.007 33702 48 627.200 8.718 25094 49 668.973 9.486 51442 50 651.479 9.113 45594 51 619.661 9.025 52518 52 644.260 8.476 48564 53 579.936 7.952 41745 54 601.752 7.759 49585 55 595.376 7.835 32747 56 588.902 7.600 33379 57 634.341 7.651 35645 58 594.305 8.319 37034 59 606.200 8.812 35681 60 610.926 8.630 20972 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) OVERLIJDENS INSCHRIJVINGEN 4.774e+02 1.265e+01 1.032e-03 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -67.903 -19.620 -0.415 20.298 57.500 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.774e+02 4.004e+01 11.924 < 2e-16 *** OVERLIJDENS 1.265e+01 4.940e+00 2.561 0.01310 * INSCHRIJVINGEN 1.032e-03 3.763e-04 2.741 0.00817 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 26.97 on 57 degrees of freedom Multiple R-squared: 0.2713, Adjusted R-squared: 0.2458 F-statistic: 10.61 on 2 and 57 DF, p-value: 0.0001208 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.8937610 0.21247806 0.10623903 [2,] 0.9504550 0.09909003 0.04954501 [3,] 0.9499125 0.10017506 0.05008753 [4,] 0.9264030 0.14719407 0.07359704 [5,] 0.8986131 0.20277372 0.10138686 [6,] 0.8958814 0.20823723 0.10411861 [7,] 0.9435548 0.11289032 0.05644516 [8,] 0.9315841 0.13683183 0.06841592 [9,] 0.9581059 0.08378826 0.04189413 [10,] 0.9342490 0.13150203 0.06575101 [11,] 0.9058584 0.18828320 0.09414160 [12,] 0.8668892 0.26622167 0.13311084 [13,] 0.8567000 0.28659991 0.14329995 [14,] 0.8633768 0.27324645 0.13662322 [15,] 0.8931046 0.21379085 0.10689542 [16,] 0.8534456 0.29310878 0.14655439 [17,] 0.8035520 0.39289602 0.19644801 [18,] 0.8082706 0.38345878 0.19172939 [19,] 0.7809938 0.43801239 0.21900620 [20,] 0.8457244 0.30855112 0.15427556 [21,] 0.8603754 0.27924930 0.13962465 [22,] 0.8252754 0.34944922 0.17472461 [23,] 0.7990174 0.40196515 0.20098257 [24,] 0.8933658 0.21326841 0.10663420 [25,] 0.8826655 0.23466906 0.11733453 [26,] 0.8400476 0.31990479 0.15995240 [27,] 0.8772494 0.24550112 0.12275056 [28,] 0.8407055 0.31858904 0.15929452 [29,] 0.7933650 0.41327010 0.20663505 [30,] 0.8081625 0.38367499 0.19183749 [31,] 0.7960577 0.40788457 0.20394229 [32,] 0.9255972 0.14880555 0.07440278 [33,] 0.9662304 0.06753921 0.03376961 [34,] 0.9533438 0.09331250 0.04665625 [35,] 0.9712266 0.05754687 0.02877343 [36,] 0.9577017 0.08459653 0.04229826 [37,] 0.9470012 0.10599754 0.05299877 [38,] 0.9311883 0.13762346 0.06881173 [39,] 0.8940023 0.21199542 0.10599771 [40,] 0.9262415 0.14751707 0.07375854 [41,] 0.8909708 0.21805849 0.10902924 [42,] 0.8417175 0.31656505 0.15828252 [43,] 0.7841924 0.43161510 0.21580755 [44,] 0.7608548 0.47829036 0.23914518 [45,] 0.7559124 0.48817529 0.24408764 [46,] 0.6598447 0.68031052 0.34015526 [47,] 0.7901112 0.41977768 0.20988884 [48,] 0.7792283 0.44154337 0.22077169 [49,] 0.6261848 0.74763030 0.37381515 > postscript(file="/var/wessaorg/rcomp/tmp/1bkaf1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/22o5s1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/3kman1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/4ileo1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/54eu01324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 60 Frequency = 1 1 2 3 4 5 6 -31.33904676 15.74662276 21.83621681 -53.54992227 -32.32535756 -2.78307146 7 8 9 10 11 12 -67.90339631 9.18093392 14.94814530 -27.62423786 35.03429627 -31.02352977 13 14 15 16 17 18 3.67720684 37.55277364 -3.63580949 -11.54022902 5.50992099 -27.35199306 19 20 21 22 23 24 -34.09453643 32.42277205 -8.31366851 -1.29989351 27.73160190 -19.95848745 25 26 27 28 29 30 39.70719724 32.43579225 -10.29849956 19.78521534 49.17800690 -23.15212791 31 32 33 34 35 36 2.66006030 35.69520543 7.63099788 8.21398126 27.98668430 -19.16752556 37 38 39 40 41 42 57.50022977 39.54748056 -16.35230113 26.75336746 -16.33772678 -24.51769781 43 44 45 46 47 48 -12.99188107 -6.11331923 24.72146325 -0.92474482 0.09471964 13.60276848 49 50 51 52 53 54 18.48003465 11.73764509 -26.10939641 9.51419922 -41.14613030 -24.97561967 55 56 57 58 59 60 -14.94403586 -19.09678307 23.35949481 -26.56076421 -19.50745533 2.69415389 > postscript(file="/var/wessaorg/rcomp/tmp/6cubz1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 60 Frequency = 1 lag(myerror, k = 1) myerror 0 -31.33904676 NA 1 15.74662276 -31.33904676 2 21.83621681 15.74662276 3 -53.54992227 21.83621681 4 -32.32535756 -53.54992227 5 -2.78307146 -32.32535756 6 -67.90339631 -2.78307146 7 9.18093392 -67.90339631 8 14.94814530 9.18093392 9 -27.62423786 14.94814530 10 35.03429627 -27.62423786 11 -31.02352977 35.03429627 12 3.67720684 -31.02352977 13 37.55277364 3.67720684 14 -3.63580949 37.55277364 15 -11.54022902 -3.63580949 16 5.50992099 -11.54022902 17 -27.35199306 5.50992099 18 -34.09453643 -27.35199306 19 32.42277205 -34.09453643 20 -8.31366851 32.42277205 21 -1.29989351 -8.31366851 22 27.73160190 -1.29989351 23 -19.95848745 27.73160190 24 39.70719724 -19.95848745 25 32.43579225 39.70719724 26 -10.29849956 32.43579225 27 19.78521534 -10.29849956 28 49.17800690 19.78521534 29 -23.15212791 49.17800690 30 2.66006030 -23.15212791 31 35.69520543 2.66006030 32 7.63099788 35.69520543 33 8.21398126 7.63099788 34 27.98668430 8.21398126 35 -19.16752556 27.98668430 36 57.50022977 -19.16752556 37 39.54748056 57.50022977 38 -16.35230113 39.54748056 39 26.75336746 -16.35230113 40 -16.33772678 26.75336746 41 -24.51769781 -16.33772678 42 -12.99188107 -24.51769781 43 -6.11331923 -12.99188107 44 24.72146325 -6.11331923 45 -0.92474482 24.72146325 46 0.09471964 -0.92474482 47 13.60276848 0.09471964 48 18.48003465 13.60276848 49 11.73764509 18.48003465 50 -26.10939641 11.73764509 51 9.51419922 -26.10939641 52 -41.14613030 9.51419922 53 -24.97561967 -41.14613030 54 -14.94403586 -24.97561967 55 -19.09678307 -14.94403586 56 23.35949481 -19.09678307 57 -26.56076421 23.35949481 58 -19.50745533 -26.56076421 59 2.69415389 -19.50745533 60 NA 2.69415389 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 15.74662276 -31.33904676 [2,] 21.83621681 15.74662276 [3,] -53.54992227 21.83621681 [4,] -32.32535756 -53.54992227 [5,] -2.78307146 -32.32535756 [6,] -67.90339631 -2.78307146 [7,] 9.18093392 -67.90339631 [8,] 14.94814530 9.18093392 [9,] -27.62423786 14.94814530 [10,] 35.03429627 -27.62423786 [11,] -31.02352977 35.03429627 [12,] 3.67720684 -31.02352977 [13,] 37.55277364 3.67720684 [14,] -3.63580949 37.55277364 [15,] -11.54022902 -3.63580949 [16,] 5.50992099 -11.54022902 [17,] -27.35199306 5.50992099 [18,] -34.09453643 -27.35199306 [19,] 32.42277205 -34.09453643 [20,] -8.31366851 32.42277205 [21,] -1.29989351 -8.31366851 [22,] 27.73160190 -1.29989351 [23,] -19.95848745 27.73160190 [24,] 39.70719724 -19.95848745 [25,] 32.43579225 39.70719724 [26,] -10.29849956 32.43579225 [27,] 19.78521534 -10.29849956 [28,] 49.17800690 19.78521534 [29,] -23.15212791 49.17800690 [30,] 2.66006030 -23.15212791 [31,] 35.69520543 2.66006030 [32,] 7.63099788 35.69520543 [33,] 8.21398126 7.63099788 [34,] 27.98668430 8.21398126 [35,] -19.16752556 27.98668430 [36,] 57.50022977 -19.16752556 [37,] 39.54748056 57.50022977 [38,] -16.35230113 39.54748056 [39,] 26.75336746 -16.35230113 [40,] -16.33772678 26.75336746 [41,] -24.51769781 -16.33772678 [42,] -12.99188107 -24.51769781 [43,] -6.11331923 -12.99188107 [44,] 24.72146325 -6.11331923 [45,] -0.92474482 24.72146325 [46,] 0.09471964 -0.92474482 [47,] 13.60276848 0.09471964 [48,] 18.48003465 13.60276848 [49,] 11.73764509 18.48003465 [50,] -26.10939641 11.73764509 [51,] 9.51419922 -26.10939641 [52,] -41.14613030 9.51419922 [53,] -24.97561967 -41.14613030 [54,] -14.94403586 -24.97561967 [55,] -19.09678307 -14.94403586 [56,] 23.35949481 -19.09678307 [57,] -26.56076421 23.35949481 [58,] -19.50745533 -26.56076421 [59,] 2.69415389 -19.50745533 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 15.74662276 -31.33904676 2 21.83621681 15.74662276 3 -53.54992227 21.83621681 4 -32.32535756 -53.54992227 5 -2.78307146 -32.32535756 6 -67.90339631 -2.78307146 7 9.18093392 -67.90339631 8 14.94814530 9.18093392 9 -27.62423786 14.94814530 10 35.03429627 -27.62423786 11 -31.02352977 35.03429627 12 3.67720684 -31.02352977 13 37.55277364 3.67720684 14 -3.63580949 37.55277364 15 -11.54022902 -3.63580949 16 5.50992099 -11.54022902 17 -27.35199306 5.50992099 18 -34.09453643 -27.35199306 19 32.42277205 -34.09453643 20 -8.31366851 32.42277205 21 -1.29989351 -8.31366851 22 27.73160190 -1.29989351 23 -19.95848745 27.73160190 24 39.70719724 -19.95848745 25 32.43579225 39.70719724 26 -10.29849956 32.43579225 27 19.78521534 -10.29849956 28 49.17800690 19.78521534 29 -23.15212791 49.17800690 30 2.66006030 -23.15212791 31 35.69520543 2.66006030 32 7.63099788 35.69520543 33 8.21398126 7.63099788 34 27.98668430 8.21398126 35 -19.16752556 27.98668430 36 57.50022977 -19.16752556 37 39.54748056 57.50022977 38 -16.35230113 39.54748056 39 26.75336746 -16.35230113 40 -16.33772678 26.75336746 41 -24.51769781 -16.33772678 42 -12.99188107 -24.51769781 43 -6.11331923 -12.99188107 44 24.72146325 -6.11331923 45 -0.92474482 24.72146325 46 0.09471964 -0.92474482 47 13.60276848 0.09471964 48 18.48003465 13.60276848 49 11.73764509 18.48003465 50 -26.10939641 11.73764509 51 9.51419922 -26.10939641 52 -41.14613030 9.51419922 53 -24.97561967 -41.14613030 54 -14.94403586 -24.97561967 55 -19.09678307 -14.94403586 56 23.35949481 -19.09678307 57 -26.56076421 23.35949481 58 -19.50745533 -26.56076421 59 2.69415389 -19.50745533 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/77tzl1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/8g0pr1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/9lz7o1324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/wessaorg/rcomp/tmp/10ocg81324638463.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/11zrwi1324638463.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/12da6h1324638463.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/13o1h01324638463.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/14vs031324638463.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/15m0p31324638463.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/161eum1324638463.tab") + } > > try(system("convert tmp/1bkaf1324638463.ps tmp/1bkaf1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/22o5s1324638463.ps tmp/22o5s1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/3kman1324638463.ps tmp/3kman1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/4ileo1324638463.ps tmp/4ileo1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/54eu01324638463.ps tmp/54eu01324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/6cubz1324638463.ps tmp/6cubz1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/77tzl1324638463.ps tmp/77tzl1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/8g0pr1324638463.ps tmp/8g0pr1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/9lz7o1324638463.ps tmp/9lz7o1324638463.png",intern=TRUE)) character(0) > try(system("convert tmp/10ocg81324638463.ps tmp/10ocg81324638463.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.108 0.535 3.673