R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(0.072,0.073,0.073,0.073,0.074,0.073,0.074,0.074,0.076,0.076,0.077,0.077,0.078,0.078,0.080,0.081,0.081,0.082,0.081,0.081,0.081,0.080,0.082,0.084,0.084,0.085,0.086,0.085,0.083,0.078,0.078,0.080,0.086,0.089,0.089,0.086,0.083,0.083,0.083,0.084,0.085,0.084,0.086,0.085,0.085,0.085,0.085,0.085,0.085,0.085,0.085,0.086,0.086,0.086,0.086,0.084,0.080,0.079,0.080,0.080,0.080,0.080,0.079,0.079,0.079,0.080,0.079,0.075,0.072,0.070,0.069,0.071,0.071,0.072,0.071,0.069,0.068,0.067,0.067,0.069,0.073,0.074,0.073,0.071,0.070,0.071,0.075,0.077,0.078,0.077,0.077,0.078,0.080,0.081,0.081,0.080,0.081,0.082,0.083,0.084,0.085,0.085,0.085,0.085,0.085,0.083,0.082,0.081,0.079,0.076,0.073,0.071,0.070,0.070,0.070,0.070,0.069,0.068,0.067,0.066) > par10 = 'FALSE' > par9 = '0' > par8 = '1' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '0' > par3 = '2' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sar1 0.5694 -0.2492 -1.0000 0.0355 s.e. 0.1005 0.0997 0.0505 0.1080 sigma^2 estimated as 2.046e-06: log likelihood = 480.24, aic = -950.49 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 97 End = 120 Frequency = 1 [1] 0.07948539 0.07953832 0.07986840 0.08010083 0.08024009 0.08028210 [7] 0.08035908 0.08047780 0.08063572 0.08075866 0.08084548 0.08089629 [13] 0.08096421 0.08105235 0.08115040 0.08124500 0.08133628 0.08142410 [19] 0.08151316 0.08160371 0.08169565 0.08178634 0.08187575 0.08196389 $se Time Series: Start = 97 End = 120 Frequency = 1 [1] 0.001437959 0.002688356 0.003605298 0.004267578 0.004800093 0.005277008 [7] 0.005726820 0.006156084 0.006565921 0.006958042 0.007335016 0.007699314 [13] 0.008068063 0.008434957 0.008793310 0.009141675 0.009481441 0.009814236 [19] 0.010141089 0.010462572 0.010779091 0.011091028 0.011398751 0.011702600 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 97 End = 120 Frequency = 1 [1] 0.07666699 0.07426914 0.07280202 0.07173638 0.07083190 0.06993916 [7] 0.06913451 0.06841187 0.06776651 0.06712090 0.06646884 0.06580563 [13] 0.06515081 0.06451984 0.06391551 0.06332731 0.06275266 0.06218820 [19] 0.06163663 0.06109707 0.06056863 0.06004793 0.05953420 0.05902679 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 97 End = 120 Frequency = 1 [1] 0.08230379 0.08480750 0.08693478 0.08846529 0.08964827 0.09062503 [7] 0.09158364 0.09254373 0.09350493 0.09439642 0.09522211 0.09598694 [13] 0.09677762 0.09758487 0.09838529 0.09916268 0.09991990 0.10066000 [19] 0.10138970 0.10211035 0.10282266 0.10352476 0.10421731 0.10490098 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 0.07200000 0.07300000 0.07300000 0.07300000 0.07400000 0.07300000 [7] 0.07400000 0.07400000 0.07600000 0.07600000 0.07700000 0.07700000 [13] 0.07800000 0.07800000 0.08000000 0.08100000 0.08100000 0.08200000 [19] 0.08100000 0.08100000 0.08100000 0.08000000 0.08200000 0.08400000 [25] 0.08400000 0.08500000 0.08600000 0.08500000 0.08300000 0.07800000 [31] 0.07800000 0.08000000 0.08600000 0.08900000 0.08900000 0.08600000 [37] 0.08300000 0.08300000 0.08300000 0.08400000 0.08500000 0.08400000 [43] 0.08600000 0.08500000 0.08500000 0.08500000 0.08500000 0.08500000 [49] 0.08500000 0.08500000 0.08500000 0.08600000 0.08600000 0.08600000 [55] 0.08600000 0.08400000 0.08000000 0.07900000 0.08000000 0.08000000 [61] 0.08000000 0.08000000 0.07900000 0.07900000 0.07900000 0.08000000 [67] 0.07900000 0.07500000 0.07200000 0.07000000 0.06900000 0.07100000 [73] 0.07100000 0.07200000 0.07100000 0.06900000 0.06800000 0.06700000 [79] 0.06700000 0.06900000 0.07300000 0.07400000 0.07300000 0.07100000 [85] 0.07000000 0.07100000 0.07500000 0.07700000 0.07800000 0.07700000 [91] 0.07700000 0.07800000 0.08000000 0.08100000 0.08100000 0.08000000 [97] 0.07948539 0.07953832 0.07986840 0.08010083 0.08024009 0.08028210 [103] 0.08035908 0.08047780 0.08063572 0.08075866 0.08084548 0.08089629 [109] 0.08096421 0.08105235 0.08115040 0.08124500 0.08133628 0.08142410 [115] 0.08151316 0.08160371 0.08169565 0.08178634 0.08187575 0.08196389 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 97 End = 120 Frequency = 1 [1] 0.01809085 0.03379951 0.04514048 0.05327757 0.05982163 0.06573082 [7] 0.07126537 0.07649419 0.08142696 0.08615846 0.09072884 0.09517513 [13] 0.09964974 0.10406801 0.10835819 0.11251986 0.11657087 0.12053232 [19] 0.12441045 0.12821196 0.13194205 0.13560978 0.13922011 0.14277752 > postscript(file="/var/www/rcomp/tmp/1gu1q1324639806.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2ftrc1324639806.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3ogop1324639806.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/4rhi21324639806.tab") > > try(system("convert tmp/1gu1q1324639806.ps tmp/1gu1q1324639806.png",intern=TRUE)) character(0) > try(system("convert tmp/2ftrc1324639806.ps tmp/2ftrc1324639806.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.460 0.090 1.553