R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > par5 = '0.95' > par4 = '15' > par3 = '0.95' > par2 = '1' > par1 = '100' > par5 <- '0.95' > par4 <- '15' > par3 <- '0.95' > par2 <- '1' > par1 <- '100' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) > par2 <- as.numeric(par2) > par3 <- as.numeric(par3) > par4 <- as.numeric(par4) > par5 <- as.numeric(par5) > (z <- abs(qnorm((1-par3)/2)) + abs(qnorm(1-par5))) [1] 3.604818 > (z1 <- abs(qnorm(1-par3)) + abs(qnorm(1-par5))) [1] 3.289707 > z2 <- z*z > z2one <- z1*z1 > z24 <- z2 * par4 > z24one <- z2one * par4 > npop <- array(NA, 200) > ppop <- array(NA, 200) > for (i in 1:200) + { + ppop[i] <- i * 100 + npop[i] <- ppop[i] * z24 / (z24 + (ppop[i] - 1) * par2*par2) + } > postscript(file="/var/fisher/rcomp/tmp/1r7801354795722.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(ppop,npop, xlab='population size', ylab='sample size (2 sided test)', main = paste('Confidence',par3)) > dumtext <- paste('Margin of error = ',par2) > dumtext <- paste(dumtext,' Population Var. = ') > dumtext <- paste(dumtext, par4) > mtext(dumtext) > grid() > dev.off() null device 1 > par2sq <- par2 * par2 > num <- par1 * z24 > denom <- z24 + (par1 - 1) * par2sq > (n <- num/denom) [1] 66.31744 > num1 <- par1 * z24one > denom1 <- z24one + (par1 - 1) * par2sq > (n1 <- num1/denom1) [1] 62.11724 > > #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/fisher/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,par1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,par4) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha) + z(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,n) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,n1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/200zs1354795722.tab") > (ni <- z24 / (par2sq)) [1] 194.9207 > (ni1 <- z24one / (par2sq)) [1] 162.3326 > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (for Infinite Populations)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,'infinite') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,par4) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'z(alpha) + z(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,ni) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,ni1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/32qzp1354795722.tab") > (z <- abs(qt((1-par3)/2,n-1)) + abs(qt(1-par5,n-1))) [1] 3.665473 > (z1 <- abs(qt(1-par3,n1-1)) + abs(qt(1-par5,n1-1))) [1] 3.34034 > z2 <- z*z > z2one <- z1*z1 > z24 <- z2 * par4 > z24one <- z2one * par4 > par2sq <- par2 * par2 > num <- par1 * z24 > denom <- z24 + (par1 - 1) * par2sq > (n <- num/denom) [1] 67.05878 > num1 <- par1 * z24one > denom1 <- z24one + (par1 - 1) * par2sq > (n1 <- num1/denom1) [1] 62.83339 > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (Unknown Population Variance)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,par1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,'unknown') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha) + t(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,n) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,n1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/4rcgt1354795722.tab") > (z <- abs(qt((1-par3)/2,ni-1)) + abs(qt(1-par5,ni-1))) [1] 3.625022 > (z1 <- abs(qt(1-par3,ni1-1)) + abs(qt(1-par5,ni1-1))) [1] 3.308707 > z2 <- z*z > z2one <- z1*z1 > z24 <- z2 * par4 > z24one <- z2one * par4 > (ni <- z24 / (par2sq)) [1] 197.1117 > (ni1 <- z24one / (par2sq)) [1] 164.2131 > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size
(Infinite Population, Unknown Population Variance)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Size',header=TRUE) > a<-table.element(a,'infinite') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Margin of Error',header=TRUE) > a<-table.element(a,par2) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Confidence',header=TRUE) > a<-table.element(a,par3) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Power',header=TRUE) > a<-table.element(a,par5) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Population Variance',header=TRUE) > a<-table.element(a,'unknown') > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE) > a<-table.element(a,z) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'t(alpha) + t(beta)',header=TRUE) > a<-table.element(a,z1) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE) > a<-table.element(a,ni) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE) > a<-table.element(a,ni1) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/5bu6z1354795722.tab") > > try(system("convert tmp/1r7801354795722.ps tmp/1r7801354795722.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.921 0.338 1.239