R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(1,0,2,0,2,0,2,0,2,0,2,0,2,0,1,0,2,0,2,0,1,0,2,0,2,0,1,0,2,0,1,0,1,1,1,0,2,0,1,1,2,0,2,0,2,0,2,0,1,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,1,0,2,0,2,0,1,0,2,0,2,0,1,0,2,1,2,0,2,0,1,0,2,0,2,0,2,0,2,0,2,0,2,0,1,0,1,1,2,0,2,1,2,0,1,0,2,0,2,0,2,0,1,1,1,0,2,0,2,0,1,0,2,0,2,0,1,1,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,1,0,2,0,2,0,1,1,1,0,2,0,2,0,2,0,2,1,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0),dim=c(2,154),dimnames=list(c('T40','CorrectAnlysis'),1:154)) > y <- array(NA,dim=c(2,154),dimnames=list(c('T40','CorrectAnlysis'),1:154)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '2' > par3 <- 'No Linear Trend' > par2 <- 'Do not include Seasonal Dummies' > par1 <- '2' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from 'package:base': as.Date, as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x CorrectAnlysis T40 1 0 1 2 0 2 3 0 2 4 0 2 5 0 2 6 0 2 7 0 2 8 0 1 9 0 2 10 0 2 11 0 1 12 0 2 13 0 2 14 0 1 15 0 2 16 0 1 17 1 1 18 0 1 19 0 2 20 1 1 21 0 2 22 0 2 23 0 2 24 0 2 25 0 1 26 0 2 27 0 2 28 0 2 29 0 2 30 0 2 31 0 2 32 0 2 33 0 2 34 0 1 35 0 2 36 0 2 37 0 1 38 0 2 39 0 2 40 0 1 41 1 2 42 0 2 43 0 2 44 0 1 45 0 2 46 0 2 47 0 2 48 0 2 49 0 2 50 0 2 51 0 1 52 1 1 53 0 2 54 1 2 55 0 2 56 0 1 57 0 2 58 0 2 59 0 2 60 1 1 61 0 1 62 0 2 63 0 2 64 0 1 65 0 2 66 0 2 67 1 1 68 0 2 69 0 2 70 0 2 71 0 2 72 0 2 73 0 2 74 0 2 75 0 2 76 0 1 77 0 2 78 0 2 79 1 1 80 0 1 81 0 2 82 0 2 83 0 2 84 1 2 85 0 2 86 0 2 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0 119 0 0 120 0 0 121 0 0 122 0 0 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0 131 0 0 132 0 0 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 1 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 1 0 153 1 0 154 0 0 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) T40 0.075041 0.002978 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -0.08100 -0.08100 -0.07653 -0.07504 0.92496 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.075041 0.031519 2.381 0.0185 * T40 0.002978 0.023586 0.126 0.8997 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.2698 on 152 degrees of freedom Multiple R-squared: 0.0001049, Adjusted R-squared: -0.006473 F-statistic: 0.01594 on 1 and 152 DF, p-value: 0.8997 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.0000000000 0.0000000000 1.0000000000 [2,] 0.0000000000 0.0000000000 1.0000000000 [3,] 0.0000000000 0.0000000000 1.0000000000 [4,] 0.0000000000 0.0000000000 1.0000000000 [5,] 0.0000000000 0.0000000000 1.0000000000 [6,] 0.0000000000 0.0000000000 1.0000000000 [7,] 0.0000000000 0.0000000000 1.0000000000 [8,] 0.0000000000 0.0000000000 1.0000000000 [9,] 0.0000000000 0.0000000000 1.0000000000 [10,] 0.0000000000 0.0000000000 1.0000000000 [11,] 0.0000000000 0.0000000000 1.0000000000 [12,] 0.0000000000 0.0000000000 1.0000000000 [13,] 0.2621884267 0.5243768534 0.7378115733 [14,] 0.2210408536 0.4420817072 0.7789591464 [15,] 0.1676153454 0.3352306908 0.8323846546 [16,] 0.7221640057 0.5556719885 0.2778359943 [17,] 0.6615181384 0.6769637232 0.3384818616 [18,] 0.5974548737 0.8050902525 0.4025451263 [19,] 0.5317096225 0.9365807550 0.4682903775 [20,] 0.4660758893 0.9321517786 0.5339241107 [21,] 0.4452509764 0.8905019528 0.5547490236 [22,] 0.3831687515 0.7663375030 0.6168312485 [23,] 0.3247066382 0.6494132763 0.6752933618 [24,] 0.2709331770 0.5418663539 0.7290668230 [25,] 0.2225813143 0.4451626287 0.7774186857 [26,] 0.1800458801 0.3600917602 0.8199541199 [27,] 0.1434105505 0.2868211010 0.8565894495 [28,] 0.1124961191 0.2249922382 0.8875038809 [29,] 0.0869209538 0.1738419076 0.9130790462 [30,] 0.0784058401 0.1568116803 0.9215941599 [31,] 0.0594920655 0.1189841309 0.9405079345 [32,] 0.0444959261 0.0889918522 0.9555040739 [33,] 0.0384294179 0.0768588357 0.9615705821 [34,] 0.0282043518 0.0564087036 0.9717956482 [35,] 0.0204209144 0.0408418289 0.9795790856 [36,] 0.0169083050 0.0338166100 0.9830916950 [37,] 0.3742939460 0.7485878921 0.6257060540 [38,] 0.3273787898 0.6547575795 0.6726212102 [39,] 0.2833751612 0.5667503223 0.7166248388 [40,] 0.2531451581 0.5062903162 0.7468548419 [41,] 0.2152402863 0.4304805725 0.7847597137 [42,] 0.1811130735 0.3622261470 0.8188869265 [43,] 0.1508274574 0.3016549147 0.8491725426 [44,] 0.1243273773 0.2486547546 0.8756726227 [45,] 0.1014566023 0.2029132045 0.8985433977 [46,] 0.0819810963 0.1639621927 0.9180189037 [47,] 0.0690619233 0.1381238467 0.9309380767 [48,] 0.3841601820 0.7683203641 0.6158398180 [49,] 0.3412764922 0.6825529844 0.6587235078 [50,] 0.8267721762 0.3464556476 0.1732278238 [51,] 0.7964350563 0.4071298873 0.2035649437 [52,] 0.7731163848 0.4537672303 0.2268836152 [53,] 0.7382227344 0.5235545311 0.2617772656 [54,] 0.7010314011 0.5979371978 0.2989685989 [55,] 0.6619183010 0.6761633980 0.3380816990 [56,] 0.9289095813 0.1421808375 0.0710904187 [57,] 0.9190620117 0.1618759766 0.0809379883 [58,] 0.9013993987 0.1972012025 0.0986006013 [59,] 0.8812299489 0.2375401021 0.1187700511 [60,] 0.8661676112 0.2676647776 0.1338323888 [61,] 0.8417062229 0.3165875542 0.1582937771 [62,] 0.8147781374 0.3704437251 0.1852218626 [63,] 0.9757606814 0.0484786372 0.0242393186 [64,] 0.9689442402 0.0621115196 0.0310557598 [65,] 0.9607021087 0.0785957826 0.0392978913 [66,] 0.9508903737 0.0982192525 0.0491096263 [67,] 0.9394003249 0.1211993503 0.0605996751 [68,] 0.9261801662 0.1476396677 0.0738198338 [69,] 0.9112636392 0.1774727217 0.0887363608 [70,] 0.8948091557 0.2103816887 0.1051908443 [71,] 0.8771567040 0.2456865919 0.1228432960 [72,] 0.8645410834 0.2709178331 0.1354589166 [73,] 0.8456559619 0.3086880762 0.1543440381 [74,] 0.8277256951 0.3445486098 0.1722743049 [75,] 0.9789332137 0.0421335727 0.0210667863 [76,] 0.9758618428 0.0482763144 0.0241381572 [77,] 0.9710754260 0.0578491480 0.0289245740 [78,] 0.9669880811 0.0660238378 0.0330119189 [79,] 0.9655964075 0.0688071850 0.0344035925 [80,] 0.9991110213 0.0017779575 0.0008889787 [81,] 0.9986806804 0.0026386391 0.0013193196 [82,] 0.9980656323 0.0038687353 0.0019343677 [83,] 0.9979804744 0.0040390512 0.0020195256 [84,] 0.9976786059 0.0046427882 0.0023213941 [85,] 0.9971759551 0.0056480898 0.0028240449 [86,] 0.9964447240 0.0071105519 0.0035552760 [87,] 0.9954310348 0.0091379305 0.0045689652 [88,] 0.9940586478 0.0118827044 0.0059413522 [89,] 0.9922284441 0.0155431118 0.0077715559 [90,] 0.9898164850 0.0203670300 0.0101835150 [91,] 0.9866717753 0.0266564494 0.0133282247 [92,] 0.9826143917 0.0347712166 0.0173856083 [93,] 0.9774345205 0.0451309589 0.0225654795 [94,] 0.9708929253 0.0582141495 0.0291070747 [95,] 0.9627233521 0.0745532958 0.0372766479 [96,] 0.9526373392 0.0947253216 0.0473626608 [97,] 0.9403318010 0.1193363981 0.0596681990 [98,] 0.9254995980 0.1490008039 0.0745004020 [99,] 0.9078430778 0.1843138444 0.0921569222 [100,] 0.8870902776 0.2258194449 0.1129097224 [101,] 0.8630131520 0.2739736960 0.1369868480 [102,] 0.8354468400 0.3291063200 0.1645531600 [103,] 0.8043086676 0.3913826648 0.1956913324 [104,] 0.7696153391 0.4607693217 0.2303846609 [105,] 0.7314966476 0.5370067048 0.2685033524 [106,] 0.6902040699 0.6195918602 0.3097959301 [107,] 0.6461128396 0.7077743208 0.3538871604 [108,] 0.5997165021 0.8005669957 0.4002834979 [109,] 0.5516135393 0.8967729214 0.4483864607 [110,] 0.5024863495 0.9950273010 0.4975136505 [111,] 0.4530736133 0.9061472267 0.5469263867 [112,] 0.4041377772 0.8082755544 0.5958622228 [113,] 0.3564299507 0.7128599013 0.6435700493 [114,] 0.3106548680 0.6213097361 0.6893451320 [115,] 0.2674386396 0.5348772791 0.7325613604 [116,] 0.2273018040 0.4546036079 0.7726981960 [117,] 0.1906397008 0.3812794017 0.8093602992 [118,] 0.1577114699 0.3154229398 0.8422885301 [119,] 0.1286381417 0.2572762835 0.8713618583 [120,] 0.1034094185 0.2068188369 0.8965905815 [121,] 0.0818979592 0.1637959183 0.9181020408 [122,] 0.0638793804 0.1277587607 0.9361206196 [123,] 0.0490558153 0.0981116306 0.9509441847 [124,] 0.0370807781 0.0741615562 0.9629192219 [125,] 0.0275832358 0.0551664716 0.9724167642 [126,] 0.0201891536 0.0403783072 0.9798108464 [127,] 0.0145392798 0.0290785597 0.9854607202 [128,] 0.0103024939 0.0206049879 0.9896975061 [129,] 0.0071845753 0.0143691506 0.9928154247 [130,] 0.0049327022 0.0098654045 0.9950672978 [131,] 0.0033363186 0.0066726373 0.9966636814 [132,] 0.0022251930 0.0044503860 0.9977748070 [133,] 0.0014655514 0.0029311028 0.9985344486 [134,] 0.0009551118 0.0019102236 0.9990448882 [135,] 0.0006177202 0.0012354405 0.9993822798 [136,] 0.0003981208 0.0007962417 0.9996018792 [137,] 0.0125746146 0.0251492291 0.9874253854 [138,] 0.0082084035 0.0164168069 0.9917915965 [139,] 0.0052493643 0.0104987285 0.9947506357 [140,] 0.0033024713 0.0066049427 0.9966975287 [141,] 0.0020589281 0.0041178562 0.9979410719 [142,] 0.0012885900 0.0025771801 0.9987114100 [143,] 0.0008284914 0.0016569829 0.9991715086 [144,] 0.0005712646 0.0011425291 0.9994287354 [145,] 0.0004601067 0.0009202133 0.9995398933 > postscript(file="/var/wessaorg/rcomp/tmp/1e2pv1355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/24mky1355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/3fxog1355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/4uv451355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/52s221355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 154 Frequency = 1 1 2 3 4 5 6 -0.07801876 -0.08099658 -0.08099658 -0.08099658 -0.08099658 -0.08099658 7 8 9 10 11 12 -0.08099658 -0.07801876 -0.08099658 -0.08099658 -0.07801876 -0.08099658 13 14 15 16 17 18 -0.08099658 -0.07801876 -0.08099658 -0.07801876 0.92198124 -0.07801876 19 20 21 22 23 24 -0.08099658 0.92198124 -0.08099658 -0.08099658 -0.08099658 -0.08099658 25 26 27 28 29 30 -0.07801876 -0.08099658 -0.08099658 -0.08099658 -0.08099658 -0.08099658 31 32 33 34 35 36 -0.08099658 -0.08099658 -0.08099658 -0.07801876 -0.08099658 -0.08099658 37 38 39 40 41 42 -0.07801876 -0.08099658 -0.08099658 -0.07801876 0.91900342 -0.08099658 43 44 45 46 47 48 -0.08099658 -0.07801876 -0.08099658 -0.08099658 -0.08099658 -0.08099658 49 50 51 52 53 54 -0.08099658 -0.08099658 -0.07801876 0.92198124 -0.08099658 0.91900342 55 56 57 58 59 60 -0.08099658 -0.07801876 -0.08099658 -0.08099658 -0.08099658 0.92198124 61 62 63 64 65 66 -0.07801876 -0.08099658 -0.08099658 -0.07801876 -0.08099658 -0.08099658 67 68 69 70 71 72 0.92198124 -0.08099658 -0.08099658 -0.08099658 -0.08099658 -0.08099658 73 74 75 76 77 78 -0.08099658 -0.08099658 -0.08099658 -0.07801876 -0.08099658 -0.08099658 79 80 81 82 83 84 0.92198124 -0.07801876 -0.08099658 -0.08099658 -0.08099658 0.91900342 85 86 87 88 89 90 -0.08099658 -0.08099658 -0.07504094 -0.07504094 -0.07504094 -0.07504094 91 92 93 94 95 96 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 97 98 99 100 101 102 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 103 104 105 106 107 108 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 109 110 111 112 113 114 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 115 116 117 118 119 120 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 121 122 123 124 125 126 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 127 128 129 130 131 132 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 133 134 135 136 137 138 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 139 140 141 142 143 144 -0.07504094 -0.07504094 0.92495906 -0.07504094 -0.07504094 -0.07504094 145 146 147 148 149 150 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 -0.07504094 151 152 153 154 -0.07504094 0.92495906 0.92495906 -0.07504094 > postscript(file="/var/wessaorg/rcomp/tmp/6reff1355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 154 Frequency = 1 lag(myerror, k = 1) myerror 0 -0.07801876 NA 1 -0.08099658 -0.07801876 2 -0.08099658 -0.08099658 3 -0.08099658 -0.08099658 4 -0.08099658 -0.08099658 5 -0.08099658 -0.08099658 6 -0.08099658 -0.08099658 7 -0.07801876 -0.08099658 8 -0.08099658 -0.07801876 9 -0.08099658 -0.08099658 10 -0.07801876 -0.08099658 11 -0.08099658 -0.07801876 12 -0.08099658 -0.08099658 13 -0.07801876 -0.08099658 14 -0.08099658 -0.07801876 15 -0.07801876 -0.08099658 16 0.92198124 -0.07801876 17 -0.07801876 0.92198124 18 -0.08099658 -0.07801876 19 0.92198124 -0.08099658 20 -0.08099658 0.92198124 21 -0.08099658 -0.08099658 22 -0.08099658 -0.08099658 23 -0.08099658 -0.08099658 24 -0.07801876 -0.08099658 25 -0.08099658 -0.07801876 26 -0.08099658 -0.08099658 27 -0.08099658 -0.08099658 28 -0.08099658 -0.08099658 29 -0.08099658 -0.08099658 30 -0.08099658 -0.08099658 31 -0.08099658 -0.08099658 32 -0.08099658 -0.08099658 33 -0.07801876 -0.08099658 34 -0.08099658 -0.07801876 35 -0.08099658 -0.08099658 36 -0.07801876 -0.08099658 37 -0.08099658 -0.07801876 38 -0.08099658 -0.08099658 39 -0.07801876 -0.08099658 40 0.91900342 -0.07801876 41 -0.08099658 0.91900342 42 -0.08099658 -0.08099658 43 -0.07801876 -0.08099658 44 -0.08099658 -0.07801876 45 -0.08099658 -0.08099658 46 -0.08099658 -0.08099658 47 -0.08099658 -0.08099658 48 -0.08099658 -0.08099658 49 -0.08099658 -0.08099658 50 -0.07801876 -0.08099658 51 0.92198124 -0.07801876 52 -0.08099658 0.92198124 53 0.91900342 -0.08099658 54 -0.08099658 0.91900342 55 -0.07801876 -0.08099658 56 -0.08099658 -0.07801876 57 -0.08099658 -0.08099658 58 -0.08099658 -0.08099658 59 0.92198124 -0.08099658 60 -0.07801876 0.92198124 61 -0.08099658 -0.07801876 62 -0.08099658 -0.08099658 63 -0.07801876 -0.08099658 64 -0.08099658 -0.07801876 65 -0.08099658 -0.08099658 66 0.92198124 -0.08099658 67 -0.08099658 0.92198124 68 -0.08099658 -0.08099658 69 -0.08099658 -0.08099658 70 -0.08099658 -0.08099658 71 -0.08099658 -0.08099658 72 -0.08099658 -0.08099658 73 -0.08099658 -0.08099658 74 -0.08099658 -0.08099658 75 -0.07801876 -0.08099658 76 -0.08099658 -0.07801876 77 -0.08099658 -0.08099658 78 0.92198124 -0.08099658 79 -0.07801876 0.92198124 80 -0.08099658 -0.07801876 81 -0.08099658 -0.08099658 82 -0.08099658 -0.08099658 83 0.91900342 -0.08099658 84 -0.08099658 0.91900342 85 -0.08099658 -0.08099658 86 -0.07504094 -0.08099658 87 -0.07504094 -0.07504094 88 -0.07504094 -0.07504094 89 -0.07504094 -0.07504094 90 -0.07504094 -0.07504094 91 -0.07504094 -0.07504094 92 -0.07504094 -0.07504094 93 -0.07504094 -0.07504094 94 -0.07504094 -0.07504094 95 -0.07504094 -0.07504094 96 -0.07504094 -0.07504094 97 -0.07504094 -0.07504094 98 -0.07504094 -0.07504094 99 -0.07504094 -0.07504094 100 -0.07504094 -0.07504094 101 -0.07504094 -0.07504094 102 -0.07504094 -0.07504094 103 -0.07504094 -0.07504094 104 -0.07504094 -0.07504094 105 -0.07504094 -0.07504094 106 -0.07504094 -0.07504094 107 -0.07504094 -0.07504094 108 -0.07504094 -0.07504094 109 -0.07504094 -0.07504094 110 -0.07504094 -0.07504094 111 -0.07504094 -0.07504094 112 -0.07504094 -0.07504094 113 -0.07504094 -0.07504094 114 -0.07504094 -0.07504094 115 -0.07504094 -0.07504094 116 -0.07504094 -0.07504094 117 -0.07504094 -0.07504094 118 -0.07504094 -0.07504094 119 -0.07504094 -0.07504094 120 -0.07504094 -0.07504094 121 -0.07504094 -0.07504094 122 -0.07504094 -0.07504094 123 -0.07504094 -0.07504094 124 -0.07504094 -0.07504094 125 -0.07504094 -0.07504094 126 -0.07504094 -0.07504094 127 -0.07504094 -0.07504094 128 -0.07504094 -0.07504094 129 -0.07504094 -0.07504094 130 -0.07504094 -0.07504094 131 -0.07504094 -0.07504094 132 -0.07504094 -0.07504094 133 -0.07504094 -0.07504094 134 -0.07504094 -0.07504094 135 -0.07504094 -0.07504094 136 -0.07504094 -0.07504094 137 -0.07504094 -0.07504094 138 -0.07504094 -0.07504094 139 -0.07504094 -0.07504094 140 0.92495906 -0.07504094 141 -0.07504094 0.92495906 142 -0.07504094 -0.07504094 143 -0.07504094 -0.07504094 144 -0.07504094 -0.07504094 145 -0.07504094 -0.07504094 146 -0.07504094 -0.07504094 147 -0.07504094 -0.07504094 148 -0.07504094 -0.07504094 149 -0.07504094 -0.07504094 150 -0.07504094 -0.07504094 151 0.92495906 -0.07504094 152 0.92495906 0.92495906 153 -0.07504094 0.92495906 154 NA -0.07504094 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -0.08099658 -0.07801876 [2,] -0.08099658 -0.08099658 [3,] -0.08099658 -0.08099658 [4,] -0.08099658 -0.08099658 [5,] -0.08099658 -0.08099658 [6,] -0.08099658 -0.08099658 [7,] -0.07801876 -0.08099658 [8,] -0.08099658 -0.07801876 [9,] -0.08099658 -0.08099658 [10,] -0.07801876 -0.08099658 [11,] -0.08099658 -0.07801876 [12,] -0.08099658 -0.08099658 [13,] -0.07801876 -0.08099658 [14,] -0.08099658 -0.07801876 [15,] -0.07801876 -0.08099658 [16,] 0.92198124 -0.07801876 [17,] -0.07801876 0.92198124 [18,] -0.08099658 -0.07801876 [19,] 0.92198124 -0.08099658 [20,] -0.08099658 0.92198124 [21,] -0.08099658 -0.08099658 [22,] -0.08099658 -0.08099658 [23,] -0.08099658 -0.08099658 [24,] -0.07801876 -0.08099658 [25,] -0.08099658 -0.07801876 [26,] -0.08099658 -0.08099658 [27,] -0.08099658 -0.08099658 [28,] -0.08099658 -0.08099658 [29,] -0.08099658 -0.08099658 [30,] -0.08099658 -0.08099658 [31,] -0.08099658 -0.08099658 [32,] -0.08099658 -0.08099658 [33,] -0.07801876 -0.08099658 [34,] -0.08099658 -0.07801876 [35,] -0.08099658 -0.08099658 [36,] -0.07801876 -0.08099658 [37,] -0.08099658 -0.07801876 [38,] -0.08099658 -0.08099658 [39,] -0.07801876 -0.08099658 [40,] 0.91900342 -0.07801876 [41,] -0.08099658 0.91900342 [42,] -0.08099658 -0.08099658 [43,] -0.07801876 -0.08099658 [44,] -0.08099658 -0.07801876 [45,] -0.08099658 -0.08099658 [46,] -0.08099658 -0.08099658 [47,] -0.08099658 -0.08099658 [48,] -0.08099658 -0.08099658 [49,] -0.08099658 -0.08099658 [50,] -0.07801876 -0.08099658 [51,] 0.92198124 -0.07801876 [52,] -0.08099658 0.92198124 [53,] 0.91900342 -0.08099658 [54,] -0.08099658 0.91900342 [55,] -0.07801876 -0.08099658 [56,] -0.08099658 -0.07801876 [57,] -0.08099658 -0.08099658 [58,] -0.08099658 -0.08099658 [59,] 0.92198124 -0.08099658 [60,] -0.07801876 0.92198124 [61,] -0.08099658 -0.07801876 [62,] -0.08099658 -0.08099658 [63,] -0.07801876 -0.08099658 [64,] -0.08099658 -0.07801876 [65,] -0.08099658 -0.08099658 [66,] 0.92198124 -0.08099658 [67,] -0.08099658 0.92198124 [68,] -0.08099658 -0.08099658 [69,] -0.08099658 -0.08099658 [70,] -0.08099658 -0.08099658 [71,] -0.08099658 -0.08099658 [72,] -0.08099658 -0.08099658 [73,] -0.08099658 -0.08099658 [74,] -0.08099658 -0.08099658 [75,] -0.07801876 -0.08099658 [76,] -0.08099658 -0.07801876 [77,] -0.08099658 -0.08099658 [78,] 0.92198124 -0.08099658 [79,] -0.07801876 0.92198124 [80,] -0.08099658 -0.07801876 [81,] -0.08099658 -0.08099658 [82,] -0.08099658 -0.08099658 [83,] 0.91900342 -0.08099658 [84,] -0.08099658 0.91900342 [85,] -0.08099658 -0.08099658 [86,] -0.07504094 -0.08099658 [87,] -0.07504094 -0.07504094 [88,] -0.07504094 -0.07504094 [89,] -0.07504094 -0.07504094 [90,] -0.07504094 -0.07504094 [91,] -0.07504094 -0.07504094 [92,] -0.07504094 -0.07504094 [93,] -0.07504094 -0.07504094 [94,] -0.07504094 -0.07504094 [95,] -0.07504094 -0.07504094 [96,] -0.07504094 -0.07504094 [97,] -0.07504094 -0.07504094 [98,] -0.07504094 -0.07504094 [99,] -0.07504094 -0.07504094 [100,] -0.07504094 -0.07504094 [101,] -0.07504094 -0.07504094 [102,] -0.07504094 -0.07504094 [103,] -0.07504094 -0.07504094 [104,] -0.07504094 -0.07504094 [105,] -0.07504094 -0.07504094 [106,] -0.07504094 -0.07504094 [107,] -0.07504094 -0.07504094 [108,] -0.07504094 -0.07504094 [109,] -0.07504094 -0.07504094 [110,] -0.07504094 -0.07504094 [111,] -0.07504094 -0.07504094 [112,] -0.07504094 -0.07504094 [113,] -0.07504094 -0.07504094 [114,] -0.07504094 -0.07504094 [115,] -0.07504094 -0.07504094 [116,] -0.07504094 -0.07504094 [117,] -0.07504094 -0.07504094 [118,] -0.07504094 -0.07504094 [119,] -0.07504094 -0.07504094 [120,] -0.07504094 -0.07504094 [121,] -0.07504094 -0.07504094 [122,] -0.07504094 -0.07504094 [123,] -0.07504094 -0.07504094 [124,] -0.07504094 -0.07504094 [125,] -0.07504094 -0.07504094 [126,] -0.07504094 -0.07504094 [127,] -0.07504094 -0.07504094 [128,] -0.07504094 -0.07504094 [129,] -0.07504094 -0.07504094 [130,] -0.07504094 -0.07504094 [131,] -0.07504094 -0.07504094 [132,] -0.07504094 -0.07504094 [133,] -0.07504094 -0.07504094 [134,] -0.07504094 -0.07504094 [135,] -0.07504094 -0.07504094 [136,] -0.07504094 -0.07504094 [137,] -0.07504094 -0.07504094 [138,] -0.07504094 -0.07504094 [139,] -0.07504094 -0.07504094 [140,] 0.92495906 -0.07504094 [141,] -0.07504094 0.92495906 [142,] -0.07504094 -0.07504094 [143,] -0.07504094 -0.07504094 [144,] -0.07504094 -0.07504094 [145,] -0.07504094 -0.07504094 [146,] -0.07504094 -0.07504094 [147,] -0.07504094 -0.07504094 [148,] -0.07504094 -0.07504094 [149,] -0.07504094 -0.07504094 [150,] -0.07504094 -0.07504094 [151,] 0.92495906 -0.07504094 [152,] 0.92495906 0.92495906 [153,] -0.07504094 0.92495906 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -0.08099658 -0.07801876 2 -0.08099658 -0.08099658 3 -0.08099658 -0.08099658 4 -0.08099658 -0.08099658 5 -0.08099658 -0.08099658 6 -0.08099658 -0.08099658 7 -0.07801876 -0.08099658 8 -0.08099658 -0.07801876 9 -0.08099658 -0.08099658 10 -0.07801876 -0.08099658 11 -0.08099658 -0.07801876 12 -0.08099658 -0.08099658 13 -0.07801876 -0.08099658 14 -0.08099658 -0.07801876 15 -0.07801876 -0.08099658 16 0.92198124 -0.07801876 17 -0.07801876 0.92198124 18 -0.08099658 -0.07801876 19 0.92198124 -0.08099658 20 -0.08099658 0.92198124 21 -0.08099658 -0.08099658 22 -0.08099658 -0.08099658 23 -0.08099658 -0.08099658 24 -0.07801876 -0.08099658 25 -0.08099658 -0.07801876 26 -0.08099658 -0.08099658 27 -0.08099658 -0.08099658 28 -0.08099658 -0.08099658 29 -0.08099658 -0.08099658 30 -0.08099658 -0.08099658 31 -0.08099658 -0.08099658 32 -0.08099658 -0.08099658 33 -0.07801876 -0.08099658 34 -0.08099658 -0.07801876 35 -0.08099658 -0.08099658 36 -0.07801876 -0.08099658 37 -0.08099658 -0.07801876 38 -0.08099658 -0.08099658 39 -0.07801876 -0.08099658 40 0.91900342 -0.07801876 41 -0.08099658 0.91900342 42 -0.08099658 -0.08099658 43 -0.07801876 -0.08099658 44 -0.08099658 -0.07801876 45 -0.08099658 -0.08099658 46 -0.08099658 -0.08099658 47 -0.08099658 -0.08099658 48 -0.08099658 -0.08099658 49 -0.08099658 -0.08099658 50 -0.07801876 -0.08099658 51 0.92198124 -0.07801876 52 -0.08099658 0.92198124 53 0.91900342 -0.08099658 54 -0.08099658 0.91900342 55 -0.07801876 -0.08099658 56 -0.08099658 -0.07801876 57 -0.08099658 -0.08099658 58 -0.08099658 -0.08099658 59 0.92198124 -0.08099658 60 -0.07801876 0.92198124 61 -0.08099658 -0.07801876 62 -0.08099658 -0.08099658 63 -0.07801876 -0.08099658 64 -0.08099658 -0.07801876 65 -0.08099658 -0.08099658 66 0.92198124 -0.08099658 67 -0.08099658 0.92198124 68 -0.08099658 -0.08099658 69 -0.08099658 -0.08099658 70 -0.08099658 -0.08099658 71 -0.08099658 -0.08099658 72 -0.08099658 -0.08099658 73 -0.08099658 -0.08099658 74 -0.08099658 -0.08099658 75 -0.07801876 -0.08099658 76 -0.08099658 -0.07801876 77 -0.08099658 -0.08099658 78 0.92198124 -0.08099658 79 -0.07801876 0.92198124 80 -0.08099658 -0.07801876 81 -0.08099658 -0.08099658 82 -0.08099658 -0.08099658 83 0.91900342 -0.08099658 84 -0.08099658 0.91900342 85 -0.08099658 -0.08099658 86 -0.07504094 -0.08099658 87 -0.07504094 -0.07504094 88 -0.07504094 -0.07504094 89 -0.07504094 -0.07504094 90 -0.07504094 -0.07504094 91 -0.07504094 -0.07504094 92 -0.07504094 -0.07504094 93 -0.07504094 -0.07504094 94 -0.07504094 -0.07504094 95 -0.07504094 -0.07504094 96 -0.07504094 -0.07504094 97 -0.07504094 -0.07504094 98 -0.07504094 -0.07504094 99 -0.07504094 -0.07504094 100 -0.07504094 -0.07504094 101 -0.07504094 -0.07504094 102 -0.07504094 -0.07504094 103 -0.07504094 -0.07504094 104 -0.07504094 -0.07504094 105 -0.07504094 -0.07504094 106 -0.07504094 -0.07504094 107 -0.07504094 -0.07504094 108 -0.07504094 -0.07504094 109 -0.07504094 -0.07504094 110 -0.07504094 -0.07504094 111 -0.07504094 -0.07504094 112 -0.07504094 -0.07504094 113 -0.07504094 -0.07504094 114 -0.07504094 -0.07504094 115 -0.07504094 -0.07504094 116 -0.07504094 -0.07504094 117 -0.07504094 -0.07504094 118 -0.07504094 -0.07504094 119 -0.07504094 -0.07504094 120 -0.07504094 -0.07504094 121 -0.07504094 -0.07504094 122 -0.07504094 -0.07504094 123 -0.07504094 -0.07504094 124 -0.07504094 -0.07504094 125 -0.07504094 -0.07504094 126 -0.07504094 -0.07504094 127 -0.07504094 -0.07504094 128 -0.07504094 -0.07504094 129 -0.07504094 -0.07504094 130 -0.07504094 -0.07504094 131 -0.07504094 -0.07504094 132 -0.07504094 -0.07504094 133 -0.07504094 -0.07504094 134 -0.07504094 -0.07504094 135 -0.07504094 -0.07504094 136 -0.07504094 -0.07504094 137 -0.07504094 -0.07504094 138 -0.07504094 -0.07504094 139 -0.07504094 -0.07504094 140 0.92495906 -0.07504094 141 -0.07504094 0.92495906 142 -0.07504094 -0.07504094 143 -0.07504094 -0.07504094 144 -0.07504094 -0.07504094 145 -0.07504094 -0.07504094 146 -0.07504094 -0.07504094 147 -0.07504094 -0.07504094 148 -0.07504094 -0.07504094 149 -0.07504094 -0.07504094 150 -0.07504094 -0.07504094 151 0.92495906 -0.07504094 152 0.92495906 0.92495906 153 -0.07504094 0.92495906 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/7fngh1355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/8yp1q1355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/99eb61355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/wessaorg/rcomp/tmp/10save1355920295.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/1161cm1355920295.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/12z97c1355920295.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/13g80e1355920295.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/14k4r21355920295.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/15326n1355920295.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/16ttcc1355920295.tab") + } > > try(system("convert tmp/1e2pv1355920295.ps tmp/1e2pv1355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/24mky1355920295.ps tmp/24mky1355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/3fxog1355920295.ps tmp/3fxog1355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/4uv451355920295.ps tmp/4uv451355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/52s221355920295.ps tmp/52s221355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/6reff1355920295.ps tmp/6reff1355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/7fngh1355920295.ps tmp/7fngh1355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/8yp1q1355920295.ps tmp/8yp1q1355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/99eb61355920295.ps tmp/99eb61355920295.png",intern=TRUE)) character(0) > try(system("convert tmp/10save1355920295.ps tmp/10save1355920295.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 7.315 1.160 8.909