R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(9700,9081,9084,9743,8587,9731,9563,9998,9437,10038,9918,9252,9737,9035,9133,9487,8700,9627,8947,9283,8829,9947,9628,9318,9605,8640,9214,9567,8547,9185,9470,9123,9278,10170,9434,9655,9429,8739,9552,9687,9019,9672,9206,9069,9788,10312,10105,9863,9656,9295,9946,9701,9049,10190,9706,9765,9893,9994,10433,10073,10112,9266,9820,10097,9115,10411,9678,10408,10153,10368,10581,10597,10680,9738,9556) > par9 = '1' > par8 = '2' > par7 = '1' > par6 = '3' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '0.0' > par1 = 'FALSE' > library(lattice) > if (par1 == 'TRUE') par1 <- TRUE > if (par1 == 'FALSE') par1 <- FALSE > par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial > par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial > par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial > par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial > armaGR <- function(arima.out, names, n){ + try1 <- arima.out$coef + try2 <- sqrt(diag(arima.out$var.coef)) + try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names))) + dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv')) + try.data.frame[,1] <- try1 + for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i] + try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2] + try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5) + vector <- rep(NA,length(names)) + vector[is.na(try.data.frame[,4])] <- 0 + maxi <- which.max(try.data.frame[,4]) + continue <- max(try.data.frame[,4],na.rm=TRUE) > .05 + vector[maxi] <- 0 + list(summary=try.data.frame,next.vector=vector,continue=continue) + } > arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){ + nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3] + coeff <- matrix(NA, nrow=nrc*2, ncol=nrc) + pval <- matrix(NA, nrow=nrc*2, ncol=nrc) + mylist <- rep(list(NULL), nrc) + names <- NULL + if(order[1] > 0) names <- paste('ar',1:order[1],sep='') + if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') ) + if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep='')) + if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep='')) + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML') + mylist[[1]] <- arima.out + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- FALSE + i <- 1 + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- 2 + aic <- arima.out$aic + while(!mystop){ + mylist[[i]] <- arima.out + arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector) + aic <- c(aic, arima.out$aic) + last.arma <- armaGR(arima.out, names, length(series)) + mystop <- !last.arma$continue + coeff[i,] <- last.arma[[1]][,1] + pval [i,] <- last.arma[[1]][,4] + i <- i+1 + } + list(coeff, pval, mylist, aic=aic) + } > arimaSelectplot <- function(arimaSelect.out,noms,choix){ + noms <- names(arimaSelect.out[[3]][[1]]$coef) + coeff <- arimaSelect.out[[1]] + k <- min(which(is.na(coeff[,1])))-1 + coeff <- coeff[1:k,] + pval <- arimaSelect.out[[2]][1:k,] + aic <- arimaSelect.out$aic[1:k] + coeff[coeff==0] <- NA + n <- ncol(coeff) + if(missing(choix)) choix <- k + layout(matrix(c(1,1,1,2, + 3,3,3,2, + 3,3,3,4, + 5,6,7,7),nr=4), + widths=c(10,35,45,15), + heights=c(30,30,15,15)) + couleurs <- rainbow(75)[1:50]#(50) + ticks <- pretty(coeff) + par(mar=c(1,1,3,1)) + plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA) + points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA) + title('aic',line=2) + par(mar=c(3,0,0,0)) + plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1)) + rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)), + xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)), + ytop = rep(1,50), + ybottom= rep(0,50),col=couleurs,border=NA) + axis(1,ticks) + rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0) + text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2) + par(mar=c(1,1,3,1)) + image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks)) + for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) { + if(pval[j,i]<.01) symb = 'green' + else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange' + else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red' + else symb = 'black' + polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5), + c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5), + col=symb) + if(j==choix) { + rect(xleft=i-.5, + xright=i+.5, + ybottom=k-j+1.5, + ytop=k-j+.5, + lwd=4) + text(i, + k-j+1, + round(coeff[j,i],2), + cex=1.2, + font=2) + } + else{ + rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5) + text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1) + } + } + axis(3,1:n,noms) + par(mar=c(0.5,0,0,0.5)) + plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8)) + cols <- c('green','orange','red','black') + niv <- c('0','0.01','0.05','0.1') + for(i in 0:3){ + polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i), + c(.4 ,.7 , .4 , .4), + col=cols[i+1]) + text(2*i,0.5,niv[i+1],cex=1.5) + } + text(8,.5,1,cex=1.5) + text(4,0,'p-value',cex=2) + box() + residus <- arimaSelect.out[[3]][[choix]]$res + par(mar=c(1,2,4,1)) + acf(residus,main='') + title('acf',line=.5) + par(mar=c(1,2,4,1)) + pacf(residus,main='') + title('pacf',line=.5) + par(mar=c(2,2,4,1)) + qqnorm(residus,main='') + title('qq-norm',line=.5) + qqline(residus) + residus + } > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > (selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5))) [[1]] [,1] [,2] [,3] [,4] [,5] [,6] [1,] -0.09077751 -0.13892924 -0.07875164 -0.7204293 0.4452594 -0.1474118 [2,] 0.00000000 -0.10717066 -0.04787912 -1.3082712 0.4561726 -0.1703750 [3,] 0.00000000 -0.09575162 0.00000000 -1.2891320 0.4440406 -0.1665250 [4,] 0.00000000 0.00000000 0.00000000 -1.2516530 0.4396680 -0.1426285 [5,] 0.00000000 0.00000000 0.00000000 -1.2469465 0.4702972 0.0000000 [6,] NA NA NA NA NA NA [7,] NA NA NA NA NA NA [8,] NA NA NA NA NA NA [9,] NA NA NA NA NA NA [10,] NA NA NA NA NA NA [11,] NA NA NA NA NA NA [12,] NA NA NA NA NA NA [13,] NA NA NA NA NA NA [14,] NA NA NA NA NA NA [,7] [1,] -0.9997304 [2,] -1.0003661 [3,] -0.9998892 [4,] -1.0000331 [5,] -0.9998834 [6,] NA [7,] NA [8,] NA [9,] NA [10,] NA [11,] NA [12,] NA [13,] NA [14,] NA [[2]] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.65216 0.39922 0.61385 0 0.01801 0.41812 0.00072 [2,] NA 0.47194 0.73794 0 0.01366 0.32709 0.00084 [3,] NA 0.51341 NA 0 0.01513 0.34031 0.00075 [4,] NA NA NA 0 0.01758 0.40564 0.00073 [5,] NA NA NA 0 0.01113 NA 0.00003 [6,] NA NA NA NA NA NA NA [7,] NA NA NA NA NA NA NA [8,] NA NA NA NA NA NA NA [9,] NA NA NA NA NA NA NA [10,] NA NA NA NA NA NA NA [11,] NA NA NA NA NA NA NA [12,] NA NA NA NA NA NA NA [13,] NA NA NA NA NA NA NA [14,] NA NA NA NA NA NA NA [[3]] [[3]][[1]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.0908 -0.1389 -0.0788 -0.7204 0.4453 -0.1474 -0.9997 s.e. 0.2005 0.1637 0.1553 0.1417 0.1836 0.1809 0.2820 sigma^2 estimated as 0.000685: log likelihood = 129.04, aic = -242.08 [[3]][[2]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 -0.0908 -0.1389 -0.0788 -0.7204 0.4453 -0.1474 -0.9997 s.e. 0.2005 0.1637 0.1553 0.1417 0.1836 0.1809 0.2820 sigma^2 estimated as 0.000685: log likelihood = 129.04, aic = -242.08 [[3]][[3]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 -0.1072 -0.0479 -1.3083 0.4562 -0.1704 -1.0004 s.e. 0 0.1482 0.1425 0.1525 0.1802 0.1726 0.2861 sigma^2 estimated as 0.0003987: log likelihood = 128.94, aic = -243.87 [[3]][[4]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 -0.0958 0 -1.2891 0.4440 -0.1665 -0.9999 s.e. 0 0.1458 0 0.1358 0.1782 0.1734 0.2833 sigma^2 estimated as 0.0004109: log likelihood = 128.88, aic = -245.76 [[3]][[5]] Call: arima(x = series, order = order, seasonal = seasonal, include.mean = include.mean, fixed = last.arma$next.vector, method = "ML") Coefficients: ar1 ar2 ar3 ma1 sar1 sar2 sma1 0 0 0 -1.2517 0.4397 -0.1426 -1.0000 s.e. 0 0 0 0.1090 0.1808 0.1705 0.2828 sigma^2 estimated as 0.0004428: log likelihood = 128.67, aic = -247.34 [[3]][[6]] NULL [[3]][[7]] NULL $aic [1] -242.0824 -243.8744 -245.7633 -247.3411 -248.6760 Warning messages: 1: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 2: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 3: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE 4: In arima(series, order = order, seasonal = seasonal, include.mean = include.mean, : some AR parameters were fixed: setting transform.pars = FALSE > postscript(file="/var/wessaorg/rcomp/tmp/1b4cu1355935686.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > resid <- arimaSelectplot(selection) > dev.off() null device 1 > resid Time Series: Start = 1 End = 75 Frequency = 1 [1] 0.0053000035 0.0023191563 0.0015185234 0.0011936049 0.0008379250 [6] 0.0008122407 0.0006793486 0.0006358580 0.0005103514 0.0005179073 [11] 0.0004592305 -0.0048106250 -0.0320280696 -0.0046895850 0.0035381820 [16] -0.0174544120 0.0125431061 -0.0058698162 -0.0408024802 -0.0368925553 [21] -0.0241119274 0.0186003849 0.0012746464 0.0251906248 0.0087898893 [26] -0.0150850642 0.0253999088 0.0153355896 0.0001985151 -0.0228421721 [31] 0.0437360661 -0.0160734677 0.0332936435 0.0162051752 -0.0185586327 [36] 0.0279438888 -0.0145290622 0.0018964021 0.0308834119 0.0012960377 [41] 0.0331308678 0.0144806534 -0.0363605600 -0.0289111349 0.0329606453 [46] 0.0049936438 0.0302810766 0.0089745316 -0.0050561148 0.0211085833 [51] 0.0225352111 -0.0211593144 -0.0056840385 0.0189033726 0.0135168998 [56] 0.0113219910 -0.0040180823 -0.0407122333 0.0122717002 0.0106494831 [61] 0.0101291950 -0.0162021477 -0.0055977981 0.0118725806 -0.0015859434 [66] 0.0126310390 -0.0176808720 0.0308050958 0.0126330638 -0.0037203101 [71] 0.0029053826 0.0284641186 0.0193811033 0.0110056272 -0.0412282090 > postscript(file="/var/wessaorg/rcomp/tmp/2p9ry1355935686.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(resid,length(resid)/2, main='Residual Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/3y59t1355935686.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/4khcb1355935686.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > cpgram(resid, main='Residual Cumulative Periodogram') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/5c50b1355935686.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(resid, main='Residual Histogram', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/6n7e51355935686.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/7ki4l1355935686.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(resid, main='Residual Normal Q-Q Plot') > qqline(resid) > dev.off() null device 1 > ncols <- length(selection[[1]][1,]) > nrows <- length(selection[[2]][,1])-1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Iteration', header=TRUE) > for (i in 1:ncols) { + a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE) + } > a<-table.row.end(a) > for (j in 1:nrows) { + a<-table.row.start(a) + mydum <- 'Estimates (' + mydum <- paste(mydum,j) + mydum <- paste(mydum,')') + a<-table.element(a,mydum, header=TRUE) + for (i in 1:ncols) { + a<-table.element(a,round(selection[[1]][j,i],4)) + } + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'(p-val)', header=TRUE) + for (i in 1:ncols) { + mydum <- '(' + mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='') + mydum <- paste(mydum,')') + a<-table.element(a,mydum) + } + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/80e9q1355935686.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Value', 1,TRUE) > a<-table.row.end(a) > for (i in (par4*par5+par3):length(resid)) { + a<-table.row.start(a) + a<-table.element(a,resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/9hw811355935686.tab") > > try(system("convert tmp/1b4cu1355935686.ps tmp/1b4cu1355935686.png",intern=TRUE)) character(0) > try(system("convert tmp/2p9ry1355935686.ps tmp/2p9ry1355935686.png",intern=TRUE)) character(0) > try(system("convert tmp/3y59t1355935686.ps tmp/3y59t1355935686.png",intern=TRUE)) character(0) > try(system("convert tmp/4khcb1355935686.ps tmp/4khcb1355935686.png",intern=TRUE)) character(0) > try(system("convert tmp/5c50b1355935686.ps tmp/5c50b1355935686.png",intern=TRUE)) character(0) > try(system("convert tmp/6n7e51355935686.ps tmp/6n7e51355935686.png",intern=TRUE)) character(0) > try(system("convert tmp/7ki4l1355935686.ps tmp/7ki4l1355935686.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 14.875 3.325 18.202