R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(1.4761,1.4721,1.487,1.5167,1.5812,1.554,1.5508,1.5764,1.5611,1.4735,1.4303,1.2757,1.2727,1.3917,1.2816,1.2644,1.3308,1.3275,1.4098,1.4134,1.4138,1.4272,1.4643,1.48,1.5023,1.4406,1.3966,1.357,1.3479,1.3315,1.2307,1.2271,1.3028,1.268,1.3648,1.3857,1.2998,1.3362,1.3692,1.3834,1.4207,1.486,1.4385,1.4453,1.426,1.445,1.3503,1.4001,1.3418,1.2939,1.3176,1.3443,1.3356,1.3214,1.2403,1.259,1.2284,1.2611,1.293,1.2993,1.2986) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '1' > par6 = '1' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '-0.2' > par1 = '12' > par10 <- 'FALSE' > par9 <- '1' > par8 <- '1' > par7 <- '1' > par6 <- '1' > par5 <- '12' > par4 <- '0' > par3 <- '1' > par2 <- '-0.2' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ma1 sar1 sma1 0.0903 -0.2297 0.5993 -0.9345 s.e. 0.5545 0.5308 0.6823 1.9339 sigma^2 estimated as 4.95e-05: log likelihood = 167.06, aic = -324.13 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 50 End = 61 Frequency = 1 [1] 0.9440054 0.9414754 0.9408164 0.9443971 0.9456618 0.9426640 0.9432115 [8] 0.9448118 0.9433840 0.9431598 0.9433488 0.9389837 $se Time Series: Start = 50 End = 61 Frequency = 1 [1] 0.007260372 0.009578493 0.011386242 0.012940007 0.014325917 0.015589072 [7] 0.016757278 0.017849190 0.018878054 0.019853707 0.020783991 0.021678151 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 50 End = 61 Frequency = 1 [1] 0.9297751 0.9227016 0.9184993 0.9190347 0.9175830 0.9121094 0.9103672 [8] 0.9098274 0.9063830 0.9042465 0.9026122 0.8964945 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 50 End = 61 Frequency = 1 [1] 0.9582357 0.9602493 0.9631334 0.9697595 0.9737406 0.9732186 0.9760558 [8] 0.9797962 0.9803850 0.9820730 0.9840855 0.9814729 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 1.476100 1.472100 1.487000 1.516700 1.581200 1.554000 1.550800 1.576400 [9] 1.561100 1.473500 1.430300 1.275700 1.272700 1.391700 1.281600 1.264400 [17] 1.330800 1.327500 1.409800 1.413400 1.413800 1.427200 1.464300 1.480000 [25] 1.502300 1.440600 1.396600 1.357000 1.347900 1.331500 1.230700 1.227100 [33] 1.302800 1.268000 1.364800 1.385700 1.299800 1.336200 1.369200 1.383400 [41] 1.420700 1.486000 1.438500 1.445300 1.426000 1.445000 1.350300 1.400100 [49] 1.341800 1.333913 1.351933 1.356675 1.331149 1.322272 1.343431 1.339536 [57] 1.328230 1.338312 1.339904 1.338562 1.369966 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 50 End = 61 Frequency = 1 [1] 0.04025727 0.05406019 0.06506896 0.07439434 0.08298939 0.09137654 [7] 0.09892070 0.10593029 0.11299624 0.11964439 0.12600445 0.13292180 > postscript(file="/var/fisher/rcomp/tmp/1ovkh1356110851.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/fisher/rcomp/tmp/27b151356110851.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/fisher/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/3npet1356110851.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/4bpki1356110851.tab") > > try(system("convert tmp/1ovkh1356110851.ps tmp/1ovkh1356110851.png",intern=TRUE)) character(0) > try(system("convert tmp/27b151356110851.ps tmp/27b151356110851.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.564 0.439 1.986