R version 2.15.2 (2012-10-26) -- "Trick or Treat"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i686-pc-linux-gnu (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(1
+ ,87.28
+ ,255
+ ,2
+ ,87.28
+ ,280.2
+ ,3
+ ,87.09
+ ,299.9
+ ,4
+ ,86.92
+ ,339.2
+ ,5
+ ,87.59
+ ,374.2
+ ,6
+ ,90.72
+ ,393.5
+ ,7
+ ,90.69
+ ,389.2
+ ,8
+ ,90.3
+ ,381.7
+ ,9
+ ,89.55
+ ,375.2
+ ,10
+ ,88.94
+ ,369
+ ,11
+ ,88.41
+ ,357.4
+ ,12
+ ,87.82
+ ,352.1
+ ,1
+ ,87.07
+ ,346.5
+ ,2
+ ,86.82
+ ,342.9
+ ,3
+ ,86.4
+ ,340.3
+ ,4
+ ,86.02
+ ,328.3
+ ,5
+ ,85.66
+ ,322.9
+ ,6
+ ,85.32
+ ,314.3
+ ,7
+ ,85
+ ,308.9
+ ,8
+ ,84.67
+ ,294
+ ,9
+ ,83.94
+ ,285.6
+ ,10
+ ,82.83
+ ,281.2
+ ,11
+ ,81.95
+ ,280.3
+ ,12
+ ,81.19
+ ,278.8
+ ,1
+ ,80.48
+ ,274.5
+ ,2
+ ,78.86
+ ,270.4
+ ,3
+ ,69.47
+ ,263.4
+ ,4
+ ,68.77
+ ,259.9
+ ,5
+ ,70.06
+ ,258
+ ,6
+ ,73.95
+ ,262.7
+ ,7
+ ,75.8
+ ,284.7
+ ,8
+ ,77.79
+ ,311.3
+ ,9
+ ,81.57
+ ,322.1
+ ,10
+ ,83.07
+ ,327
+ ,11
+ ,84.34
+ ,331.3
+ ,12
+ ,85.1
+ ,333.3
+ ,1
+ ,85.25
+ ,321.4
+ ,2
+ ,84.26
+ ,327
+ ,3
+ ,83.63
+ ,320
+ ,4
+ ,86.44
+ ,314.7
+ ,5
+ ,85.3
+ ,316.7
+ ,6
+ ,84.1
+ ,314.4
+ ,7
+ ,83.36
+ ,321.3
+ ,8
+ ,82.48
+ ,318.2
+ ,9
+ ,81.58
+ ,307.2
+ ,10
+ ,80.47
+ ,301.3
+ ,11
+ ,79.34
+ ,287.5
+ ,12
+ ,82.13
+ ,277.7
+ ,1
+ ,81.69
+ ,274.4
+ ,2
+ ,80.7
+ ,258.8
+ ,3
+ ,79.88
+ ,253.3
+ ,4
+ ,79.16
+ ,251
+ ,5
+ ,78.38
+ ,248.4
+ ,6
+ ,77.42
+ ,249.5
+ ,7
+ ,76.47
+ ,246.1
+ ,8
+ ,75.46
+ ,244.5
+ ,9
+ ,74.48
+ ,243.6
+ ,10
+ ,78.27
+ ,244
+ ,11
+ ,80.7
+ ,240.8
+ ,12
+ ,79.91
+ ,249.8
+ ,1
+ ,78.75
+ ,248
+ ,2
+ ,77.78
+ ,259.4
+ ,3
+ ,81.14
+ ,260.5
+ ,4
+ ,81.08
+ ,260.8
+ ,5
+ ,80.03
+ ,261.3
+ ,6
+ ,78.91
+ ,259.5
+ ,7
+ ,78.01
+ ,256.6
+ ,8
+ ,76.9
+ ,257.9
+ ,9
+ ,75.97
+ ,256.5
+ ,10
+ ,81.93
+ ,254.2
+ ,11
+ ,80.27
+ ,253.3
+ ,12
+ ,78.67
+ ,253.8
+ ,1
+ ,77.42
+ ,255.5
+ ,2
+ ,76.16
+ ,257.1
+ ,3
+ ,74.7
+ ,257.3
+ ,4
+ ,76.39
+ ,253.2
+ ,5
+ ,76.04
+ ,252.8
+ ,6
+ ,74.65
+ ,252
+ ,7
+ ,73.29
+ ,250.7
+ ,8
+ ,71.79
+ ,252.2
+ ,9
+ ,74.39
+ ,250
+ ,10
+ ,74.91
+ ,251
+ ,11
+ ,74.54
+ ,253.4
+ ,12
+ ,73.08
+ ,251.2
+ ,1
+ ,72.75
+ ,255.6
+ ,2
+ ,71.32
+ ,261.1
+ ,3
+ ,70.38
+ ,258.9
+ ,4
+ ,70.35
+ ,259.9
+ ,5
+ ,70.01
+ ,261.2
+ ,6
+ ,69.36
+ ,264.7
+ ,7
+ ,67.77
+ ,267.1
+ ,8
+ ,69.26
+ ,266.4
+ ,9
+ ,69.8
+ ,267.7
+ ,10
+ ,68.38
+ ,268.6
+ ,11
+ ,67.62
+ ,267.5
+ ,12
+ ,68.39
+ ,268.5
+ ,1
+ ,66.95
+ ,268.5
+ ,2
+ ,65.21
+ ,270.5
+ ,3
+ ,66.64
+ ,270.9
+ ,4
+ ,63.45
+ ,270.1
+ ,5
+ ,60.66
+ ,269.3
+ ,6
+ ,62.34
+ ,269.8
+ ,7
+ ,60.32
+ ,270.1
+ ,8
+ ,58.64
+ ,264.9
+ ,9
+ ,60.46
+ ,263.7
+ ,10
+ ,58.59
+ ,264.8
+ ,11
+ ,61.87
+ ,263.7
+ ,12
+ ,61.85
+ ,255.9
+ ,1
+ ,67.44
+ ,276.2
+ ,2
+ ,77.06
+ ,360.1
+ ,3
+ ,91.74
+ ,380.5
+ ,4
+ ,93.15
+ ,373.7
+ ,5
+ ,94.15
+ ,369.8
+ ,6
+ ,93.11
+ ,366.6
+ ,7
+ ,91.51
+ ,359.3
+ ,8
+ ,89.96
+ ,345.8
+ ,9
+ ,88.16
+ ,326.2
+ ,10
+ ,86.98
+ ,324.5
+ ,11
+ ,88.03
+ ,328.1
+ ,12
+ ,86.24
+ ,327.5
+ ,1
+ ,84.65
+ ,324.4
+ ,2
+ ,83.23
+ ,316.5
+ ,3
+ ,81.7
+ ,310.9
+ ,4
+ ,80.25
+ ,301.5
+ ,5
+ ,78.8
+ ,291.7
+ ,6
+ ,77.51
+ ,290.4
+ ,7
+ ,76.2
+ ,287.4
+ ,8
+ ,75.04
+ ,277.7
+ ,9
+ ,74
+ ,281.6
+ ,10
+ ,75.49
+ ,288
+ ,11
+ ,77.14
+ ,276
+ ,12
+ ,76.15
+ ,272.9
+ ,1
+ ,76.27
+ ,283
+ ,2
+ ,78.19
+ ,283.3
+ ,3
+ ,76.49
+ ,276.8
+ ,4
+ ,77.31
+ ,284.5
+ ,5
+ ,76.65
+ ,282.7
+ ,6
+ ,74.99
+ ,281.2
+ ,7
+ ,73.51
+ ,287.4
+ ,8
+ ,72.07
+ ,283.1
+ ,9
+ ,70.59
+ ,284
+ ,10
+ ,71.96
+ ,285.5
+ ,11
+ ,76.29
+ ,289.2)
+ ,dim=c(3
+ ,143)
+ ,dimnames=list(c('month'
+ ,'col'
+ ,'usa')
+ ,1:143))
>  y <- array(NA,dim=c(3,143),dimnames=list(c('month','col','usa'),1:143))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '1'
> par3 <- 'No Linear Trend'
> par2 <- 'Do not include Seasonal Dummies'
> par1 <- '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
The following object(s) are masked from 'package:base':
    as.Date, as.Date.numeric
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
    month   col   usa
1       1 87.28 255.0
2       2 87.28 280.2
3       3 87.09 299.9
4       4 86.92 339.2
5       5 87.59 374.2
6       6 90.72 393.5
7       7 90.69 389.2
8       8 90.30 381.7
9       9 89.55 375.2
10     10 88.94 369.0
11     11 88.41 357.4
12     12 87.82 352.1
13      1 87.07 346.5
14      2 86.82 342.9
15      3 86.40 340.3
16      4 86.02 328.3
17      5 85.66 322.9
18      6 85.32 314.3
19      7 85.00 308.9
20      8 84.67 294.0
21      9 83.94 285.6
22     10 82.83 281.2
23     11 81.95 280.3
24     12 81.19 278.8
25      1 80.48 274.5
26      2 78.86 270.4
27      3 69.47 263.4
28      4 68.77 259.9
29      5 70.06 258.0
30      6 73.95 262.7
31      7 75.80 284.7
32      8 77.79 311.3
33      9 81.57 322.1
34     10 83.07 327.0
35     11 84.34 331.3
36     12 85.10 333.3
37      1 85.25 321.4
38      2 84.26 327.0
39      3 83.63 320.0
40      4 86.44 314.7
41      5 85.30 316.7
42      6 84.10 314.4
43      7 83.36 321.3
44      8 82.48 318.2
45      9 81.58 307.2
46     10 80.47 301.3
47     11 79.34 287.5
48     12 82.13 277.7
49      1 81.69 274.4
50      2 80.70 258.8
51      3 79.88 253.3
52      4 79.16 251.0
53      5 78.38 248.4
54      6 77.42 249.5
55      7 76.47 246.1
56      8 75.46 244.5
57      9 74.48 243.6
58     10 78.27 244.0
59     11 80.70 240.8
60     12 79.91 249.8
61      1 78.75 248.0
62      2 77.78 259.4
63      3 81.14 260.5
64      4 81.08 260.8
65      5 80.03 261.3
66      6 78.91 259.5
67      7 78.01 256.6
68      8 76.90 257.9
69      9 75.97 256.5
70     10 81.93 254.2
71     11 80.27 253.3
72     12 78.67 253.8
73      1 77.42 255.5
74      2 76.16 257.1
75      3 74.70 257.3
76      4 76.39 253.2
77      5 76.04 252.8
78      6 74.65 252.0
79      7 73.29 250.7
80      8 71.79 252.2
81      9 74.39 250.0
82     10 74.91 251.0
83     11 74.54 253.4
84     12 73.08 251.2
85      1 72.75 255.6
86      2 71.32 261.1
87      3 70.38 258.9
88      4 70.35 259.9
89      5 70.01 261.2
90      6 69.36 264.7
91      7 67.77 267.1
92      8 69.26 266.4
93      9 69.80 267.7
94     10 68.38 268.6
95     11 67.62 267.5
96     12 68.39 268.5
97      1 66.95 268.5
98      2 65.21 270.5
99      3 66.64 270.9
100     4 63.45 270.1
101     5 60.66 269.3
102     6 62.34 269.8
103     7 60.32 270.1
104     8 58.64 264.9
105     9 60.46 263.7
106    10 58.59 264.8
107    11 61.87 263.7
108    12 61.85 255.9
109     1 67.44 276.2
110     2 77.06 360.1
111     3 91.74 380.5
112     4 93.15 373.7
113     5 94.15 369.8
114     6 93.11 366.6
115     7 91.51 359.3
116     8 89.96 345.8
117     9 88.16 326.2
118    10 86.98 324.5
119    11 88.03 328.1
120    12 86.24 327.5
121     1 84.65 324.4
122     2 83.23 316.5
123     3 81.70 310.9
124     4 80.25 301.5
125     5 78.80 291.7
126     6 77.51 290.4
127     7 76.20 287.4
128     8 75.04 277.7
129     9 74.00 281.6
130    10 75.49 288.0
131    11 77.14 276.0
132    12 76.15 272.9
133     1 76.27 283.0
134     2 78.19 283.3
135     3 76.49 276.8
136     4 77.31 284.5
137     5 76.65 282.7
138     6 74.99 281.2
139     7 73.51 287.4
140     8 72.07 283.1
141     9 70.59 284.0
142    10 71.96 285.5
143    11 76.29 289.2
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)          col          usa  
   8.339390    -0.039120     0.004089  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-5.8307 -3.0603 -0.1961  2.7759  5.7651 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  8.339390   2.904272   2.871  0.00472 **
col         -0.039120   0.051300  -0.763  0.44700   
usa          0.004089   0.010640   0.384  0.70131   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 3.462 on 140 degrees of freedom
Multiple R-squared: 0.004437,	Adjusted R-squared: -0.009785 
F-statistic: 0.312 on 2 and 140 DF,  p-value: 0.7325 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
               [,1]         [,2]       [,3]
  [1,] 0.0004621183 0.0009242367 0.99953788
  [2,] 0.0006569192 0.0013138384 0.99934308
  [3,] 0.0022869383 0.0045738766 0.99771306
  [4,] 0.0101997116 0.0203994232 0.98980029
  [5,] 0.0393389112 0.0786778223 0.96066109
  [6,] 0.1322100746 0.2644201491 0.86778993
  [7,] 0.2903256329 0.5806512659 0.70967437
  [8,] 0.4405074289 0.8810148578 0.55949257
  [9,] 0.4275762397 0.8551524794 0.57242376
 [10,] 0.3558636915 0.7117273831 0.64413631
 [11,] 0.2821166613 0.5642333225 0.71788334
 [12,] 0.2332885867 0.4665771734 0.76671141
 [13,] 0.2155225856 0.4310451713 0.78447741
 [14,] 0.2210183162 0.4420366324 0.77898168
 [15,] 0.2634388392 0.5268776784 0.73656116
 [16,] 0.3216073872 0.6432147744 0.67839261
 [17,] 0.3642596393 0.7285192785 0.63574036
 [18,] 0.3821608180 0.7643216359 0.61783918
 [19,] 0.3876235120 0.7752470241 0.61237649
 [20,] 0.6197504712 0.7604990575 0.38024953
 [21,] 0.6916379482 0.6167241036 0.30836205
 [22,] 0.6942263570 0.6115472860 0.30577364
 [23,] 0.6462973933 0.7074052134 0.35370261
 [24,] 0.5906291072 0.8187417856 0.40937089
 [25,] 0.5355817865 0.9288364270 0.46441821
 [26,] 0.4847656621 0.9695313241 0.51523434
 [27,] 0.4416678107 0.8833356214 0.55833219
 [28,] 0.4184695330 0.8369390659 0.58153047
 [29,] 0.4232338106 0.8464676212 0.57676619
 [30,] 0.4636544204 0.9273088407 0.53634558
 [31,] 0.5479594273 0.9040811453 0.45204057
 [32,] 0.6192038221 0.7615923558 0.38079618
 [33,] 0.6487239434 0.7025521132 0.35127606
 [34,] 0.6408719787 0.7182560426 0.35912802
 [35,] 0.6044225747 0.7911548506 0.39557743
 [36,] 0.5557692355 0.8884615291 0.44423076
 [37,] 0.5020321239 0.9959357522 0.49796788
 [38,] 0.4509583428 0.9019166856 0.54904166
 [39,] 0.4115982739 0.8231965478 0.58840173
 [40,] 0.3953623039 0.7907246077 0.60463770
 [41,] 0.4071016519 0.8142033037 0.59289835
 [42,] 0.4588865833 0.9177731665 0.54111342
 [43,] 0.5691675619 0.8616648762 0.43083244
 [44,] 0.6161052955 0.7677894090 0.38389470
 [45,] 0.6217152947 0.7565694105 0.37828471
 [46,] 0.6026991166 0.7946017667 0.39730088
 [47,] 0.5681180500 0.8637639000 0.43188195
 [48,] 0.5252459695 0.9495080611 0.47475403
 [49,] 0.4801134838 0.9602269677 0.51988652
 [50,] 0.4404299852 0.8808599703 0.55957001
 [51,] 0.4112838858 0.8225677717 0.58871611
 [52,] 0.3969476734 0.7938953468 0.60305233
 [53,] 0.4171985620 0.8343971240 0.58280144
 [54,] 0.4759465446 0.9518930892 0.52405346
 [55,] 0.5630198630 0.8739602740 0.43698014
 [56,] 0.6236072554 0.7527854891 0.37639274
 [57,] 0.6503934533 0.6992130934 0.34960655
 [58,] 0.6454921046 0.7090157908 0.35450790
 [59,] 0.6213917899 0.7572164203 0.37860821
 [60,] 0.5839175539 0.8321648921 0.41608245
 [61,] 0.5389235698 0.9221528604 0.46107643
 [62,] 0.4935007908 0.9870015816 0.50649921
 [63,] 0.4543533685 0.9087067369 0.54564663
 [64,] 0.4288769512 0.8577539024 0.57112305
 [65,] 0.4357993858 0.8715987715 0.56420061
 [66,] 0.4712178050 0.9424356100 0.52878220
 [67,] 0.5460841543 0.9078316914 0.45391585
 [68,] 0.6148076447 0.7703847106 0.38519236
 [69,] 0.6497150692 0.7005698617 0.35028493
 [70,] 0.6566574739 0.6866850521 0.34334253
 [71,] 0.6429014109 0.7141971781 0.35709859
 [72,] 0.6135475003 0.7729049994 0.38645250
 [73,] 0.5730521369 0.8538957261 0.42694786
 [74,] 0.5276572697 0.9446854606 0.47234273
 [75,] 0.4845500875 0.9691001750 0.51544991
 [76,] 0.4525749313 0.9051498625 0.54742507
 [77,] 0.4397920645 0.8795841289 0.56020794
 [78,] 0.4562598695 0.9125197390 0.54374013
 [79,] 0.5121636048 0.9756727903 0.48783640
 [80,] 0.6018682079 0.7962635842 0.39813179
 [81,] 0.6512738659 0.6974522683 0.34872613
 [82,] 0.6686139671 0.6627720657 0.33138603
 [83,] 0.6608529707 0.6782940586 0.33914703
 [84,] 0.6334749456 0.7330501088 0.36652505
 [85,] 0.5912897340 0.8174205319 0.40871027
 [86,] 0.5428539277 0.9142921447 0.45714607
 [87,] 0.4974546840 0.9949093680 0.50254532
 [88,] 0.4632280681 0.9264561362 0.53677193
 [89,] 0.4496946994 0.8993893989 0.55030530
 [90,] 0.4640338691 0.9280677383 0.53596613
 [91,] 0.5170651078 0.9658697843 0.48293489
 [92,] 0.6191440662 0.7617118676 0.38085593
 [93,] 0.6696615948 0.6606768104 0.33033841
 [94,] 0.6867134455 0.6265731090 0.31328655
 [95,] 0.6762519431 0.6474961138 0.32374806
 [96,] 0.6466829885 0.7066340230 0.35331701
 [97,] 0.6039465999 0.7921068002 0.39605340
 [98,] 0.5534198313 0.8931603374 0.44658017
 [99,] 0.5023497989 0.9953004023 0.49765020
[100,] 0.4587922490 0.9175844979 0.54120775
[101,] 0.4375936016 0.8751872033 0.56240640
[102,] 0.4610354540 0.9220709080 0.53896455
[103,] 0.5627701529 0.8744596942 0.43722985
[104,] 0.6239849089 0.7520301821 0.37601509
[105,] 0.6105031364 0.7789937273 0.38949686
[106,] 0.5933800779 0.8132398442 0.40661992
[107,] 0.5629826799 0.8740346402 0.43701732
[108,] 0.5171889724 0.9656220551 0.48281103
[109,] 0.4630600466 0.9261200933 0.53693995
[110,] 0.4042075914 0.8084151827 0.59579241
[111,] 0.3492799580 0.6985599160 0.65072004
[112,] 0.3225226137 0.6450452275 0.67747739
[113,] 0.3387374194 0.6774748388 0.66126258
[114,] 0.4895305415 0.9790610830 0.51046946
[115,] 0.8999944721 0.2000110558 0.10000553
[116,] 0.8749023177 0.2501953646 0.12509768
[117,] 0.8404400670 0.3191198659 0.15955993
[118,] 0.7963033482 0.4073933036 0.20369665
[119,] 0.7422234582 0.5155530836 0.25777654
[120,] 0.6764420960 0.6471158080 0.32355790
[121,] 0.6051847897 0.7896304206 0.39481521
[122,] 0.5293545503 0.9412908995 0.47064545
[123,] 0.4451630146 0.8903260291 0.55483699
[124,] 0.3687622562 0.7375245125 0.63123774
[125,] 0.3946888104 0.7893776208 0.60531119
[126,] 0.4784138030 0.9568276061 0.52158620
[127,] 0.9361224673 0.1277550655 0.06387753
[128,] 0.9743773633 0.0512452733 0.02562264
[129,] 0.9743557917 0.0512884166 0.02564421
[130,] 0.9459877409 0.1080245181 0.05401226
[131,] 0.9304987246 0.1390025508 0.06950128
[132,] 0.8593283717 0.2813432566 0.14067163
> postscript(file="/var/fisher/rcomp/tmp/1gyn41352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/fisher/rcomp/tmp/2mi2l1352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/fisher/rcomp/tmp/3ityt1352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/fisher/rcomp/tmp/46id91352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/fisher/rcomp/tmp/5qpn11352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 143 
Frequency = 1 
          1           2           3           4           5           6 
-4.96782113 -4.07087594 -3.15887142 -2.32623824 -1.44315959 -0.39964120 
          7           8           9          10          11          12 
 0.61676996  1.63218427  2.62942594  3.63091756  4.65762194  5.65621542 
         13          14          15          16          17          18 
-5.35022343 -4.34528129 -3.35107901 -2.31687085 -1.30887084 -0.28700211 
         19          20          21          22          23          24 
 0.72256270  1.77058633  2.77638041  3.75095101  4.72020603  5.69660912 
         25          26          27          28          29          30 
-5.31358126 -4.36018865 -3.69889819 -2.71196896 -1.65373428 -0.52077840 
         31          32          33          34          35          36 
 0.46162493  1.43069346  2.53440034  3.57304175  4.60513928  5.62669145 
         37          38          39          40          41          42 
-5.31877579 -4.38040556 -3.37642476 -2.24482361 -1.29759925 -0.33513734 
         43          44          45          46          47          48 
 0.60769654  1.58594841  2.59572474  3.57642956  4.58865885  5.73788025 
         49          50          51          52          53          54 
-5.26583723 -4.24077010 -3.25035630 -2.26911683 -1.28899771 -0.33105124 
         55          56          57          58          59          60 
 0.64568907  1.61272113  2.57806416  3.72469280  4.83284048  5.76513047 
         61          62          63          64          65          66 
-5.27288756 -4.35745390 -3.23050945 -2.23408349 -1.27720412 -0.31365736 
         67          68          69          70          71          72 
 0.66299421  1.61425480  2.58359856  3.82615897  4.76490047  5.70026388 
         73          74          75          76          77          78 
-5.35558810 -4.41142234 -3.46935530 -2.38647581 -1.39853198 -0.44963707 
         79          80          81          82          83          84 
 0.50247619  1.43766212  2.54837071  3.56462359  4.54033448  5.49221627 
         85          86          87          88          89          90 
-5.53868700 -4.61712058 -3.64489644 -2.65015951 -1.66877660 -0.70851770 
         91          92          93          94          95          96 
 0.21946691  1.28061820  2.29642662  3.23719583  4.21196313  5.23799598 
         97          98          99         100         101         102 
-5.81833668 -4.89458426 -3.84027859 -2.96179950 -2.06767245 -1.00399575 
        103         104         105         106         107         108 
-0.08424479  0.87129905  1.94740464  2.86975200  4.00256371  5.03367923 
        109         110         111         112         113         114 
-5.83065690 -4.79743054 -3.30657570 -2.22360820 -1.16853933 -0.19613771 
        115         116         117         118         119         120 
 0.77112363  1.76569572  2.77543364  3.73622426  4.76257805  5.69500711 
        121         122         123         124         125         126 
-5.35451616 -4.37775955 -3.41471194 -2.43299471 -1.44964170 -0.49479005 
        127         128         129         130         131         132 
 0.46623131  1.46052014  2.40388649  3.43600249  4.54962405  5.52357272 
        133         134         135         136         137         138 
-5.51303660 -4.43915323 -3.47907547 -2.47848612 -1.49694420 -0.55574902 
        139         140         141         142         143 
 0.36099877  1.32225086  2.26067288  3.30813293  4.46239104 
> postscript(file="/var/fisher/rcomp/tmp/6ee6v1352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 143 
Frequency = 1 
    lag(myerror, k = 1)     myerror
  0         -4.96782113          NA
  1         -4.07087594 -4.96782113
  2         -3.15887142 -4.07087594
  3         -2.32623824 -3.15887142
  4         -1.44315959 -2.32623824
  5         -0.39964120 -1.44315959
  6          0.61676996 -0.39964120
  7          1.63218427  0.61676996
  8          2.62942594  1.63218427
  9          3.63091756  2.62942594
 10          4.65762194  3.63091756
 11          5.65621542  4.65762194
 12         -5.35022343  5.65621542
 13         -4.34528129 -5.35022343
 14         -3.35107901 -4.34528129
 15         -2.31687085 -3.35107901
 16         -1.30887084 -2.31687085
 17         -0.28700211 -1.30887084
 18          0.72256270 -0.28700211
 19          1.77058633  0.72256270
 20          2.77638041  1.77058633
 21          3.75095101  2.77638041
 22          4.72020603  3.75095101
 23          5.69660912  4.72020603
 24         -5.31358126  5.69660912
 25         -4.36018865 -5.31358126
 26         -3.69889819 -4.36018865
 27         -2.71196896 -3.69889819
 28         -1.65373428 -2.71196896
 29         -0.52077840 -1.65373428
 30          0.46162493 -0.52077840
 31          1.43069346  0.46162493
 32          2.53440034  1.43069346
 33          3.57304175  2.53440034
 34          4.60513928  3.57304175
 35          5.62669145  4.60513928
 36         -5.31877579  5.62669145
 37         -4.38040556 -5.31877579
 38         -3.37642476 -4.38040556
 39         -2.24482361 -3.37642476
 40         -1.29759925 -2.24482361
 41         -0.33513734 -1.29759925
 42          0.60769654 -0.33513734
 43          1.58594841  0.60769654
 44          2.59572474  1.58594841
 45          3.57642956  2.59572474
 46          4.58865885  3.57642956
 47          5.73788025  4.58865885
 48         -5.26583723  5.73788025
 49         -4.24077010 -5.26583723
 50         -3.25035630 -4.24077010
 51         -2.26911683 -3.25035630
 52         -1.28899771 -2.26911683
 53         -0.33105124 -1.28899771
 54          0.64568907 -0.33105124
 55          1.61272113  0.64568907
 56          2.57806416  1.61272113
 57          3.72469280  2.57806416
 58          4.83284048  3.72469280
 59          5.76513047  4.83284048
 60         -5.27288756  5.76513047
 61         -4.35745390 -5.27288756
 62         -3.23050945 -4.35745390
 63         -2.23408349 -3.23050945
 64         -1.27720412 -2.23408349
 65         -0.31365736 -1.27720412
 66          0.66299421 -0.31365736
 67          1.61425480  0.66299421
 68          2.58359856  1.61425480
 69          3.82615897  2.58359856
 70          4.76490047  3.82615897
 71          5.70026388  4.76490047
 72         -5.35558810  5.70026388
 73         -4.41142234 -5.35558810
 74         -3.46935530 -4.41142234
 75         -2.38647581 -3.46935530
 76         -1.39853198 -2.38647581
 77         -0.44963707 -1.39853198
 78          0.50247619 -0.44963707
 79          1.43766212  0.50247619
 80          2.54837071  1.43766212
 81          3.56462359  2.54837071
 82          4.54033448  3.56462359
 83          5.49221627  4.54033448
 84         -5.53868700  5.49221627
 85         -4.61712058 -5.53868700
 86         -3.64489644 -4.61712058
 87         -2.65015951 -3.64489644
 88         -1.66877660 -2.65015951
 89         -0.70851770 -1.66877660
 90          0.21946691 -0.70851770
 91          1.28061820  0.21946691
 92          2.29642662  1.28061820
 93          3.23719583  2.29642662
 94          4.21196313  3.23719583
 95          5.23799598  4.21196313
 96         -5.81833668  5.23799598
 97         -4.89458426 -5.81833668
 98         -3.84027859 -4.89458426
 99         -2.96179950 -3.84027859
100         -2.06767245 -2.96179950
101         -1.00399575 -2.06767245
102         -0.08424479 -1.00399575
103          0.87129905 -0.08424479
104          1.94740464  0.87129905
105          2.86975200  1.94740464
106          4.00256371  2.86975200
107          5.03367923  4.00256371
108         -5.83065690  5.03367923
109         -4.79743054 -5.83065690
110         -3.30657570 -4.79743054
111         -2.22360820 -3.30657570
112         -1.16853933 -2.22360820
113         -0.19613771 -1.16853933
114          0.77112363 -0.19613771
115          1.76569572  0.77112363
116          2.77543364  1.76569572
117          3.73622426  2.77543364
118          4.76257805  3.73622426
119          5.69500711  4.76257805
120         -5.35451616  5.69500711
121         -4.37775955 -5.35451616
122         -3.41471194 -4.37775955
123         -2.43299471 -3.41471194
124         -1.44964170 -2.43299471
125         -0.49479005 -1.44964170
126          0.46623131 -0.49479005
127          1.46052014  0.46623131
128          2.40388649  1.46052014
129          3.43600249  2.40388649
130          4.54962405  3.43600249
131          5.52357272  4.54962405
132         -5.51303660  5.52357272
133         -4.43915323 -5.51303660
134         -3.47907547 -4.43915323
135         -2.47848612 -3.47907547
136         -1.49694420 -2.47848612
137         -0.55574902 -1.49694420
138          0.36099877 -0.55574902
139          1.32225086  0.36099877
140          2.26067288  1.32225086
141          3.30813293  2.26067288
142          4.46239104  3.30813293
143                  NA  4.46239104
> dum1 <- dum[2:length(myerror),]
> dum1
       lag(myerror, k = 1)     myerror
  [1,]         -4.07087594 -4.96782113
  [2,]         -3.15887142 -4.07087594
  [3,]         -2.32623824 -3.15887142
  [4,]         -1.44315959 -2.32623824
  [5,]         -0.39964120 -1.44315959
  [6,]          0.61676996 -0.39964120
  [7,]          1.63218427  0.61676996
  [8,]          2.62942594  1.63218427
  [9,]          3.63091756  2.62942594
 [10,]          4.65762194  3.63091756
 [11,]          5.65621542  4.65762194
 [12,]         -5.35022343  5.65621542
 [13,]         -4.34528129 -5.35022343
 [14,]         -3.35107901 -4.34528129
 [15,]         -2.31687085 -3.35107901
 [16,]         -1.30887084 -2.31687085
 [17,]         -0.28700211 -1.30887084
 [18,]          0.72256270 -0.28700211
 [19,]          1.77058633  0.72256270
 [20,]          2.77638041  1.77058633
 [21,]          3.75095101  2.77638041
 [22,]          4.72020603  3.75095101
 [23,]          5.69660912  4.72020603
 [24,]         -5.31358126  5.69660912
 [25,]         -4.36018865 -5.31358126
 [26,]         -3.69889819 -4.36018865
 [27,]         -2.71196896 -3.69889819
 [28,]         -1.65373428 -2.71196896
 [29,]         -0.52077840 -1.65373428
 [30,]          0.46162493 -0.52077840
 [31,]          1.43069346  0.46162493
 [32,]          2.53440034  1.43069346
 [33,]          3.57304175  2.53440034
 [34,]          4.60513928  3.57304175
 [35,]          5.62669145  4.60513928
 [36,]         -5.31877579  5.62669145
 [37,]         -4.38040556 -5.31877579
 [38,]         -3.37642476 -4.38040556
 [39,]         -2.24482361 -3.37642476
 [40,]         -1.29759925 -2.24482361
 [41,]         -0.33513734 -1.29759925
 [42,]          0.60769654 -0.33513734
 [43,]          1.58594841  0.60769654
 [44,]          2.59572474  1.58594841
 [45,]          3.57642956  2.59572474
 [46,]          4.58865885  3.57642956
 [47,]          5.73788025  4.58865885
 [48,]         -5.26583723  5.73788025
 [49,]         -4.24077010 -5.26583723
 [50,]         -3.25035630 -4.24077010
 [51,]         -2.26911683 -3.25035630
 [52,]         -1.28899771 -2.26911683
 [53,]         -0.33105124 -1.28899771
 [54,]          0.64568907 -0.33105124
 [55,]          1.61272113  0.64568907
 [56,]          2.57806416  1.61272113
 [57,]          3.72469280  2.57806416
 [58,]          4.83284048  3.72469280
 [59,]          5.76513047  4.83284048
 [60,]         -5.27288756  5.76513047
 [61,]         -4.35745390 -5.27288756
 [62,]         -3.23050945 -4.35745390
 [63,]         -2.23408349 -3.23050945
 [64,]         -1.27720412 -2.23408349
 [65,]         -0.31365736 -1.27720412
 [66,]          0.66299421 -0.31365736
 [67,]          1.61425480  0.66299421
 [68,]          2.58359856  1.61425480
 [69,]          3.82615897  2.58359856
 [70,]          4.76490047  3.82615897
 [71,]          5.70026388  4.76490047
 [72,]         -5.35558810  5.70026388
 [73,]         -4.41142234 -5.35558810
 [74,]         -3.46935530 -4.41142234
 [75,]         -2.38647581 -3.46935530
 [76,]         -1.39853198 -2.38647581
 [77,]         -0.44963707 -1.39853198
 [78,]          0.50247619 -0.44963707
 [79,]          1.43766212  0.50247619
 [80,]          2.54837071  1.43766212
 [81,]          3.56462359  2.54837071
 [82,]          4.54033448  3.56462359
 [83,]          5.49221627  4.54033448
 [84,]         -5.53868700  5.49221627
 [85,]         -4.61712058 -5.53868700
 [86,]         -3.64489644 -4.61712058
 [87,]         -2.65015951 -3.64489644
 [88,]         -1.66877660 -2.65015951
 [89,]         -0.70851770 -1.66877660
 [90,]          0.21946691 -0.70851770
 [91,]          1.28061820  0.21946691
 [92,]          2.29642662  1.28061820
 [93,]          3.23719583  2.29642662
 [94,]          4.21196313  3.23719583
 [95,]          5.23799598  4.21196313
 [96,]         -5.81833668  5.23799598
 [97,]         -4.89458426 -5.81833668
 [98,]         -3.84027859 -4.89458426
 [99,]         -2.96179950 -3.84027859
[100,]         -2.06767245 -2.96179950
[101,]         -1.00399575 -2.06767245
[102,]         -0.08424479 -1.00399575
[103,]          0.87129905 -0.08424479
[104,]          1.94740464  0.87129905
[105,]          2.86975200  1.94740464
[106,]          4.00256371  2.86975200
[107,]          5.03367923  4.00256371
[108,]         -5.83065690  5.03367923
[109,]         -4.79743054 -5.83065690
[110,]         -3.30657570 -4.79743054
[111,]         -2.22360820 -3.30657570
[112,]         -1.16853933 -2.22360820
[113,]         -0.19613771 -1.16853933
[114,]          0.77112363 -0.19613771
[115,]          1.76569572  0.77112363
[116,]          2.77543364  1.76569572
[117,]          3.73622426  2.77543364
[118,]          4.76257805  3.73622426
[119,]          5.69500711  4.76257805
[120,]         -5.35451616  5.69500711
[121,]         -4.37775955 -5.35451616
[122,]         -3.41471194 -4.37775955
[123,]         -2.43299471 -3.41471194
[124,]         -1.44964170 -2.43299471
[125,]         -0.49479005 -1.44964170
[126,]          0.46623131 -0.49479005
[127,]          1.46052014  0.46623131
[128,]          2.40388649  1.46052014
[129,]          3.43600249  2.40388649
[130,]          4.54962405  3.43600249
[131,]          5.52357272  4.54962405
[132,]         -5.51303660  5.52357272
[133,]         -4.43915323 -5.51303660
[134,]         -3.47907547 -4.43915323
[135,]         -2.47848612 -3.47907547
[136,]         -1.49694420 -2.47848612
[137,]         -0.55574902 -1.49694420
[138,]          0.36099877 -0.55574902
[139,]          1.32225086  0.36099877
[140,]          2.26067288  1.32225086
[141,]          3.30813293  2.26067288
[142,]          4.46239104  3.30813293
> z <- as.data.frame(dum1)
> z
    lag(myerror, k = 1)     myerror
1           -4.07087594 -4.96782113
2           -3.15887142 -4.07087594
3           -2.32623824 -3.15887142
4           -1.44315959 -2.32623824
5           -0.39964120 -1.44315959
6            0.61676996 -0.39964120
7            1.63218427  0.61676996
8            2.62942594  1.63218427
9            3.63091756  2.62942594
10           4.65762194  3.63091756
11           5.65621542  4.65762194
12          -5.35022343  5.65621542
13          -4.34528129 -5.35022343
14          -3.35107901 -4.34528129
15          -2.31687085 -3.35107901
16          -1.30887084 -2.31687085
17          -0.28700211 -1.30887084
18           0.72256270 -0.28700211
19           1.77058633  0.72256270
20           2.77638041  1.77058633
21           3.75095101  2.77638041
22           4.72020603  3.75095101
23           5.69660912  4.72020603
24          -5.31358126  5.69660912
25          -4.36018865 -5.31358126
26          -3.69889819 -4.36018865
27          -2.71196896 -3.69889819
28          -1.65373428 -2.71196896
29          -0.52077840 -1.65373428
30           0.46162493 -0.52077840
31           1.43069346  0.46162493
32           2.53440034  1.43069346
33           3.57304175  2.53440034
34           4.60513928  3.57304175
35           5.62669145  4.60513928
36          -5.31877579  5.62669145
37          -4.38040556 -5.31877579
38          -3.37642476 -4.38040556
39          -2.24482361 -3.37642476
40          -1.29759925 -2.24482361
41          -0.33513734 -1.29759925
42           0.60769654 -0.33513734
43           1.58594841  0.60769654
44           2.59572474  1.58594841
45           3.57642956  2.59572474
46           4.58865885  3.57642956
47           5.73788025  4.58865885
48          -5.26583723  5.73788025
49          -4.24077010 -5.26583723
50          -3.25035630 -4.24077010
51          -2.26911683 -3.25035630
52          -1.28899771 -2.26911683
53          -0.33105124 -1.28899771
54           0.64568907 -0.33105124
55           1.61272113  0.64568907
56           2.57806416  1.61272113
57           3.72469280  2.57806416
58           4.83284048  3.72469280
59           5.76513047  4.83284048
60          -5.27288756  5.76513047
61          -4.35745390 -5.27288756
62          -3.23050945 -4.35745390
63          -2.23408349 -3.23050945
64          -1.27720412 -2.23408349
65          -0.31365736 -1.27720412
66           0.66299421 -0.31365736
67           1.61425480  0.66299421
68           2.58359856  1.61425480
69           3.82615897  2.58359856
70           4.76490047  3.82615897
71           5.70026388  4.76490047
72          -5.35558810  5.70026388
73          -4.41142234 -5.35558810
74          -3.46935530 -4.41142234
75          -2.38647581 -3.46935530
76          -1.39853198 -2.38647581
77          -0.44963707 -1.39853198
78           0.50247619 -0.44963707
79           1.43766212  0.50247619
80           2.54837071  1.43766212
81           3.56462359  2.54837071
82           4.54033448  3.56462359
83           5.49221627  4.54033448
84          -5.53868700  5.49221627
85          -4.61712058 -5.53868700
86          -3.64489644 -4.61712058
87          -2.65015951 -3.64489644
88          -1.66877660 -2.65015951
89          -0.70851770 -1.66877660
90           0.21946691 -0.70851770
91           1.28061820  0.21946691
92           2.29642662  1.28061820
93           3.23719583  2.29642662
94           4.21196313  3.23719583
95           5.23799598  4.21196313
96          -5.81833668  5.23799598
97          -4.89458426 -5.81833668
98          -3.84027859 -4.89458426
99          -2.96179950 -3.84027859
100         -2.06767245 -2.96179950
101         -1.00399575 -2.06767245
102         -0.08424479 -1.00399575
103          0.87129905 -0.08424479
104          1.94740464  0.87129905
105          2.86975200  1.94740464
106          4.00256371  2.86975200
107          5.03367923  4.00256371
108         -5.83065690  5.03367923
109         -4.79743054 -5.83065690
110         -3.30657570 -4.79743054
111         -2.22360820 -3.30657570
112         -1.16853933 -2.22360820
113         -0.19613771 -1.16853933
114          0.77112363 -0.19613771
115          1.76569572  0.77112363
116          2.77543364  1.76569572
117          3.73622426  2.77543364
118          4.76257805  3.73622426
119          5.69500711  4.76257805
120         -5.35451616  5.69500711
121         -4.37775955 -5.35451616
122         -3.41471194 -4.37775955
123         -2.43299471 -3.41471194
124         -1.44964170 -2.43299471
125         -0.49479005 -1.44964170
126          0.46623131 -0.49479005
127          1.46052014  0.46623131
128          2.40388649  1.46052014
129          3.43600249  2.40388649
130          4.54962405  3.43600249
131          5.52357272  4.54962405
132         -5.51303660  5.52357272
133         -4.43915323 -5.51303660
134         -3.47907547 -4.43915323
135         -2.47848612 -3.47907547
136         -1.49694420 -2.47848612
137         -0.55574902 -1.49694420
138          0.36099877 -0.55574902
139          1.32225086  0.36099877
140          2.26067288  1.32225086
141          3.30813293  2.26067288
142          4.46239104  3.30813293
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/fisher/rcomp/tmp/7u8t71352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/fisher/rcomp/tmp/8mlvc1352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/fisher/rcomp/tmp/9c4rf1352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/fisher/rcomp/tmp/10u4c11352153329.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/fisher/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/fisher/rcomp/tmp/11ba1o1352153329.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/fisher/rcomp/tmp/12s9e31352153329.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/fisher/rcomp/tmp/13sejt1352153329.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/fisher/rcomp/tmp/14u5bt1352153329.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/fisher/rcomp/tmp/15exij1352153330.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/fisher/rcomp/tmp/16y9k31352153330.tab") 
+ }
> 
> try(system("convert tmp/1gyn41352153329.ps tmp/1gyn41352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/2mi2l1352153329.ps tmp/2mi2l1352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/3ityt1352153329.ps tmp/3ityt1352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/46id91352153329.ps tmp/46id91352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/5qpn11352153329.ps tmp/5qpn11352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/6ee6v1352153329.ps tmp/6ee6v1352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/7u8t71352153329.ps tmp/7u8t71352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/8mlvc1352153329.ps tmp/8mlvc1352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/9c4rf1352153329.ps tmp/9c4rf1352153329.png",intern=TRUE))
character(0)
> try(system("convert tmp/10u4c11352153329.ps tmp/10u4c11352153329.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  7.352   1.162   8.510