R version 2.15.2 (2012-10-26) -- "Trick or Treat"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i686-pc-linux-gnu (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(132838
+ ,312991
+ ,5599
+ ,47645
+ ,15545
+ ,575093
+ ,129842
+ ,301647
+ ,5234
+ ,45970
+ ,15001
+ ,557560
+ ,129694
+ ,305353
+ ,5279
+ ,48069
+ ,14961
+ ,564478
+ ,130080
+ ,313665
+ ,5391
+ ,53080
+ ,15245
+ ,580523
+ ,131496
+ ,322402
+ ,5280
+ ,57896
+ ,15656
+ ,596594
+ ,131556
+ ,318280
+ ,5173
+ ,54344
+ ,15577
+ ,586570
+ ,128925
+ ,292852
+ ,4724
+ ,40482
+ ,14630
+ ,536214
+ ,127836
+ ,287481
+ ,4554
+ ,37110
+ ,14336
+ ,523597
+ ,129164
+ ,295210
+ ,4713
+ ,39263
+ ,14834
+ ,536535
+ ,129531
+ ,295650
+ ,4811
+ ,38889
+ ,14921
+ ,536322
+ ,128548
+ ,292919
+ ,4668
+ ,39593
+ ,14707
+ ,532638
+ ,127330
+ ,290649
+ ,4516
+ ,39305
+ ,14516
+ ,528222
+ ,123815
+ ,281687
+ ,4203
+ ,40560
+ ,14055
+ ,516141
+ ,124393
+ ,270336
+ ,4016
+ ,38306
+ ,13493
+ ,501866
+ ,123707
+ ,271420
+ ,3993
+ ,40911
+ ,13528
+ ,506174
+ ,123736
+ ,278183
+ ,3971
+ ,44700
+ ,13719
+ ,517945
+ ,124507
+ ,284913
+ ,3838
+ ,50328
+ ,14170
+ ,533590
+ ,125005
+ ,283487
+ ,3891
+ ,47499
+ ,14009
+ ,528379
+ ,121383
+ ,256677
+ ,3306
+ ,34446
+ ,13159
+ ,477580
+ ,121200
+ ,252945
+ ,3235
+ ,31434
+ ,12927
+ ,469357
+ ,125249
+ ,264963
+ ,3404
+ ,34066
+ ,13510
+ ,490243
+ ,125253
+ ,265988
+ ,3400
+ ,35044
+ ,13520
+ ,492622
+ ,127977
+ ,274857
+ ,3447
+ ,37040
+ ,14089
+ ,507561
+ ,128984
+ ,279650
+ ,3431
+ ,38706
+ ,14251
+ ,516922
+ ,126770
+ ,276715
+ ,3321
+ ,40430
+ ,13980
+ ,514258
+ ,126448
+ ,273887
+ ,3189
+ ,39613
+ ,13715
+ ,509846
+ ,127845
+ ,282308
+ ,3256
+ ,44236
+ ,14112
+ ,527070
+ ,128818
+ ,289847
+ ,3290
+ ,47859
+ ,14289
+ ,541657
+ ,132127
+ ,301101
+ ,3475
+ ,53711
+ ,15020
+ ,564591
+ ,132338
+ ,297008
+ ,3454
+ ,50352
+ ,14860
+ ,555362
+ ,126645
+ ,268909
+ ,2806
+ ,36142
+ ,13800
+ ,498662
+ ,130625
+ ,278383
+ ,2777
+ ,34819
+ ,14431
+ ,511038
+ ,133506
+ ,286226
+ ,2865
+ ,37353
+ ,14944
+ ,525919
+ ,135277
+ ,288936
+ ,2924
+ ,37550
+ ,15083
+ ,531673
+ ,137664
+ ,298953
+ ,3011
+ ,40462
+ ,15707
+ ,548854
+ ,139821
+ ,305837
+ ,3099
+ ,41753
+ ,15954
+ ,560576
+ ,138440
+ ,301979
+ ,2988
+ ,43437
+ ,15631
+ ,557274
+ ,139879
+ ,306281
+ ,3032
+ ,44784
+ ,15813
+ ,565742
+ ,142256
+ ,317057
+ ,3131
+ ,49537
+ ,16356
+ ,587625
+ ,146322
+ ,334780
+ ,3343
+ ,54974
+ ,17086
+ ,619916
+ ,146389
+ ,335895
+ ,3275
+ ,58535
+ ,17302
+ ,625809
+ ,147841
+ ,333874
+ ,3243
+ ,54762
+ ,17247
+ ,619567
+ ,146449
+ ,311028
+ ,2897
+ ,40738
+ ,16398
+ ,572942
+ ,147960
+ ,311767
+ ,2818
+ ,38052
+ ,16590
+ ,572775
+ ,148487
+ ,312575
+ ,2836
+ ,38436
+ ,16673
+ ,574205
+ ,149802
+ ,315040
+ ,2721
+ ,36993
+ ,16962
+ ,579799
+ ,151387
+ ,320325
+ ,2742
+ ,39056
+ ,17278
+ ,590072
+ ,151936
+ ,321178
+ ,2707
+ ,39996
+ ,17224
+ ,593408)
+ ,dim=c(6
+ ,48)
+ ,dimnames=list(c('Basisonderwijs(lager_1ste_graad_secundair)'
+ ,'Secundair_onderwijs(2de
+ ,3de
+ ,4de_graad)'
+ ,'Duaal_onderwijs'
+ ,'Hoger_onderwijs(Bachelor)'
+ ,'Leercontract'
+ ,'Werkloosheid_totaal')
+ ,1:48))
>  y <- array(NA,dim=c(6,48),dimnames=list(c('Basisonderwijs(lager_1ste_graad_secundair)','Secundair_onderwijs(2de,3de,4de_graad)','Duaal_onderwijs','Hoger_onderwijs(Bachelor)','Leercontract','Werkloosheid_totaal'),1:48))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '6'
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
The following object(s) are masked from 'package:base':
    as.Date, as.Date.numeric
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Werkloosheid_totaal Basisonderwijs(lager_1ste_graad_secundair)
1               575093                                     132838
2               557560                                     129842
3               564478                                     129694
4               580523                                     130080
5               596594                                     131496
6               586570                                     131556
7               536214                                     128925
8               523597                                     127836
9               536535                                     129164
10              536322                                     129531
11              532638                                     128548
12              528222                                     127330
13              516141                                     123815
14              501866                                     124393
15              506174                                     123707
16              517945                                     123736
17              533590                                     124507
18              528379                                     125005
19              477580                                     121383
20              469357                                     121200
21              490243                                     125249
22              492622                                     125253
23              507561                                     127977
24              516922                                     128984
25              514258                                     126770
26              509846                                     126448
27              527070                                     127845
28              541657                                     128818
29              564591                                     132127
30              555362                                     132338
31              498662                                     126645
32              511038                                     130625
33              525919                                     133506
34              531673                                     135277
35              548854                                     137664
36              560576                                     139821
37              557274                                     138440
38              565742                                     139879
39              587625                                     142256
40              619916                                     146322
41              625809                                     146389
42              619567                                     147841
43              572942                                     146449
44              572775                                     147960
45              574205                                     148487
46              579799                                     149802
47              590072                                     151387
48              593408                                     151936
   Secundair_onderwijs(2de,3de,4de_graad) Duaal_onderwijs
1                                  312991            5599
2                                  301647            5234
3                                  305353            5279
4                                  313665            5391
5                                  322402            5280
6                                  318280            5173
7                                  292852            4724
8                                  287481            4554
9                                  295210            4713
10                                 295650            4811
11                                 292919            4668
12                                 290649            4516
13                                 281687            4203
14                                 270336            4016
15                                 271420            3993
16                                 278183            3971
17                                 284913            3838
18                                 283487            3891
19                                 256677            3306
20                                 252945            3235
21                                 264963            3404
22                                 265988            3400
23                                 274857            3447
24                                 279650            3431
25                                 276715            3321
26                                 273887            3189
27                                 282308            3256
28                                 289847            3290
29                                 301101            3475
30                                 297008            3454
31                                 268909            2806
32                                 278383            2777
33                                 286226            2865
34                                 288936            2924
35                                 298953            3011
36                                 305837            3099
37                                 301979            2988
38                                 306281            3032
39                                 317057            3131
40                                 334780            3343
41                                 335895            3275
42                                 333874            3243
43                                 311028            2897
44                                 311767            2818
45                                 312575            2836
46                                 315040            2721
47                                 320325            2742
48                                 321178            2707
   Hoger_onderwijs(Bachelor) Leercontract
1                      47645        15545
2                      45970        15001
3                      48069        14961
4                      53080        15245
5                      57896        15656
6                      54344        15577
7                      40482        14630
8                      37110        14336
9                      39263        14834
10                     38889        14921
11                     39593        14707
12                     39305        14516
13                     40560        14055
14                     38306        13493
15                     40911        13528
16                     44700        13719
17                     50328        14170
18                     47499        14009
19                     34446        13159
20                     31434        12927
21                     34066        13510
22                     35044        13520
23                     37040        14089
24                     38706        14251
25                     40430        13980
26                     39613        13715
27                     44236        14112
28                     47859        14289
29                     53711        15020
30                     50352        14860
31                     36142        13800
32                     34819        14431
33                     37353        14944
34                     37550        15083
35                     40462        15707
36                     41753        15954
37                     43437        15631
38                     44784        15813
39                     49537        16356
40                     54974        17086
41                     58535        17302
42                     54762        17247
43                     40738        16398
44                     38052        16590
45                     38436        16673
46                     36993        16962
47                     39056        17278
48                     39996        17224
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
                                 (Intercept)  
                                  -22725.320  
`Basisonderwijs(lager_1ste_graad_secundair)`  
                                       1.722  
    `Secundair_onderwijs(2de,3de,4de_graad)`  
                                       0.997  
                             Duaal_onderwijs  
                                       3.394  
                 `Hoger_onderwijs(Bachelor)`  
                                       1.500  
                                Leercontract  
                                      -2.159  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-2127.2  -956.0  -239.6   932.8  2391.2 
Coefficients:
                                               Estimate Std. Error t value
(Intercept)                                  -2.273e+04  8.210e+03  -2.768
`Basisonderwijs(lager_1ste_graad_secundair)`  1.722e+00  1.797e-01   9.581
`Secundair_onderwijs(2de,3de,4de_graad)`      9.970e-01  1.226e-01   8.131
Duaal_onderwijs                               3.394e+00  7.340e-01   4.624
`Hoger_onderwijs(Bachelor)`                   1.500e+00  9.848e-02  15.237
Leercontract                                 -2.159e+00  2.065e+00  -1.046
                                             Pr(>|t|)    
(Intercept)                                   0.00836 ** 
`Basisonderwijs(lager_1ste_graad_secundair)` 3.96e-12 ***
`Secundair_onderwijs(2de,3de,4de_graad)`     3.67e-10 ***
Duaal_onderwijs                              3.57e-05 ***
`Hoger_onderwijs(Bachelor)`                   < 2e-16 ***
Leercontract                                  0.30166    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 1175 on 42 degrees of freedom
Multiple R-squared: 0.9991,	Adjusted R-squared: 0.999 
F-statistic:  9694 on 5 and 42 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
             [,1]         [,2]         [,3]
 [1,] 0.016891112 0.0337822249 0.9831088876
 [2,] 0.031840351 0.0636807028 0.9681596486
 [3,] 0.075158415 0.1503168305 0.9248415848
 [4,] 0.038722857 0.0774457142 0.9612771429
 [5,] 0.019042316 0.0380846316 0.9809576842
 [6,] 0.018882139 0.0377642785 0.9811178608
 [7,] 0.008356227 0.0167124539 0.9916437731
 [8,] 0.003449856 0.0068997129 0.9965501436
 [9,] 0.006033269 0.0120665376 0.9939667312
[10,] 0.002532931 0.0050658625 0.9974670688
[11,] 0.028407620 0.0568152397 0.9715923802
[12,] 0.088472663 0.1769453255 0.9115273372
[13,] 0.091966001 0.1839320029 0.9080339986
[14,] 0.065017892 0.1300357842 0.9349821079
[15,] 0.039716330 0.0794326597 0.9602836702
[16,] 0.033335344 0.0666706870 0.9666646565
[17,] 0.069165065 0.1383301310 0.9308349345
[18,] 0.088236384 0.1764727687 0.9117636156
[19,] 0.107971055 0.2159421098 0.8920289451
[20,] 0.163958667 0.3279173332 0.8360413334
[21,] 0.192171818 0.3843436359 0.8078281821
[22,] 0.824195788 0.3516084233 0.1758042117
[23,] 0.987985238 0.0240295243 0.0120147622
[24,] 0.986902839 0.0261943212 0.0130971606
[25,] 0.987662293 0.0246754142 0.0123377071
[26,] 0.999597196 0.0008056087 0.0004028043
[27,] 0.998750678 0.0024986437 0.0012493218
[28,] 0.995724859 0.0085502827 0.0042751414
[29,] 0.995286949 0.0094261013 0.0047130507
[30,] 0.993614548 0.0127709037 0.0063854519
[31,] 0.971259741 0.0574805171 0.0287402585
> postscript(file="/var/wessaorg/rcomp/tmp/1cskb1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/2fghp1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/3sjql1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/4wgqe1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/5tiui1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 48 
Frequency = 1 
            1             2             3             4             5 
  124.8620235  1637.6604769  1727.1124212  1534.9301716   495.3626423 
            6             7             8             9            10 
   -0.1891302  -196.5112662  -581.9793850  -331.0216955 -1198.2178869 
           11            12            13            14            15 
-1499.9416873 -1019.9987222    70.0121822 -1080.2195842  -426.8055901 
           16            17            18            19            20 
 -646.4040972   -57.7786005  -987.3374908   914.7077830   986.9104811 
           21            22            23            24            25 
 -344.3056473  -426.3632268  -945.5315003  -192.5329957  1083.1047157 
           26            27            28            29            30 
 1146.6922777  1263.0323865  1489.1568312  -324.3933767 -1070.2613160 
           31            32            33            34            35 
 1278.1301029   802.0417678   -89.8764086  -282.7074167  -515.5876176 
           36            37            38            39            40 
-1073.1536856  -998.4279162 -1074.5627530  -322.8913735    -3.4485726 
           41            42            43            44            45 
   16.7143046 -1059.3955538 -2127.1692536  -919.6256041 -1660.6179372 
           46            47            48 
 2391.2083114  2181.7629968  2313.8554150 
> postscript(file="/var/wessaorg/rcomp/tmp/6b2zo1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 48 
Frequency = 1 
   lag(myerror, k = 1)       myerror
 0         124.8620235            NA
 1        1637.6604769   124.8620235
 2        1727.1124212  1637.6604769
 3        1534.9301716  1727.1124212
 4         495.3626423  1534.9301716
 5          -0.1891302   495.3626423
 6        -196.5112662    -0.1891302
 7        -581.9793850  -196.5112662
 8        -331.0216955  -581.9793850
 9       -1198.2178869  -331.0216955
10       -1499.9416873 -1198.2178869
11       -1019.9987222 -1499.9416873
12          70.0121822 -1019.9987222
13       -1080.2195842    70.0121822
14        -426.8055901 -1080.2195842
15        -646.4040972  -426.8055901
16         -57.7786005  -646.4040972
17        -987.3374908   -57.7786005
18         914.7077830  -987.3374908
19         986.9104811   914.7077830
20        -344.3056473   986.9104811
21        -426.3632268  -344.3056473
22        -945.5315003  -426.3632268
23        -192.5329957  -945.5315003
24        1083.1047157  -192.5329957
25        1146.6922777  1083.1047157
26        1263.0323865  1146.6922777
27        1489.1568312  1263.0323865
28        -324.3933767  1489.1568312
29       -1070.2613160  -324.3933767
30        1278.1301029 -1070.2613160
31         802.0417678  1278.1301029
32         -89.8764086   802.0417678
33        -282.7074167   -89.8764086
34        -515.5876176  -282.7074167
35       -1073.1536856  -515.5876176
36        -998.4279162 -1073.1536856
37       -1074.5627530  -998.4279162
38        -322.8913735 -1074.5627530
39          -3.4485726  -322.8913735
40          16.7143046    -3.4485726
41       -1059.3955538    16.7143046
42       -2127.1692536 -1059.3955538
43        -919.6256041 -2127.1692536
44       -1660.6179372  -919.6256041
45        2391.2083114 -1660.6179372
46        2181.7629968  2391.2083114
47        2313.8554150  2181.7629968
48                  NA  2313.8554150
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)       myerror
 [1,]        1637.6604769   124.8620235
 [2,]        1727.1124212  1637.6604769
 [3,]        1534.9301716  1727.1124212
 [4,]         495.3626423  1534.9301716
 [5,]          -0.1891302   495.3626423
 [6,]        -196.5112662    -0.1891302
 [7,]        -581.9793850  -196.5112662
 [8,]        -331.0216955  -581.9793850
 [9,]       -1198.2178869  -331.0216955
[10,]       -1499.9416873 -1198.2178869
[11,]       -1019.9987222 -1499.9416873
[12,]          70.0121822 -1019.9987222
[13,]       -1080.2195842    70.0121822
[14,]        -426.8055901 -1080.2195842
[15,]        -646.4040972  -426.8055901
[16,]         -57.7786005  -646.4040972
[17,]        -987.3374908   -57.7786005
[18,]         914.7077830  -987.3374908
[19,]         986.9104811   914.7077830
[20,]        -344.3056473   986.9104811
[21,]        -426.3632268  -344.3056473
[22,]        -945.5315003  -426.3632268
[23,]        -192.5329957  -945.5315003
[24,]        1083.1047157  -192.5329957
[25,]        1146.6922777  1083.1047157
[26,]        1263.0323865  1146.6922777
[27,]        1489.1568312  1263.0323865
[28,]        -324.3933767  1489.1568312
[29,]       -1070.2613160  -324.3933767
[30,]        1278.1301029 -1070.2613160
[31,]         802.0417678  1278.1301029
[32,]         -89.8764086   802.0417678
[33,]        -282.7074167   -89.8764086
[34,]        -515.5876176  -282.7074167
[35,]       -1073.1536856  -515.5876176
[36,]        -998.4279162 -1073.1536856
[37,]       -1074.5627530  -998.4279162
[38,]        -322.8913735 -1074.5627530
[39,]          -3.4485726  -322.8913735
[40,]          16.7143046    -3.4485726
[41,]       -1059.3955538    16.7143046
[42,]       -2127.1692536 -1059.3955538
[43,]        -919.6256041 -2127.1692536
[44,]       -1660.6179372  -919.6256041
[45,]        2391.2083114 -1660.6179372
[46,]        2181.7629968  2391.2083114
[47,]        2313.8554150  2181.7629968
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)       myerror
1         1637.6604769   124.8620235
2         1727.1124212  1637.6604769
3         1534.9301716  1727.1124212
4          495.3626423  1534.9301716
5           -0.1891302   495.3626423
6         -196.5112662    -0.1891302
7         -581.9793850  -196.5112662
8         -331.0216955  -581.9793850
9        -1198.2178869  -331.0216955
10       -1499.9416873 -1198.2178869
11       -1019.9987222 -1499.9416873
12          70.0121822 -1019.9987222
13       -1080.2195842    70.0121822
14        -426.8055901 -1080.2195842
15        -646.4040972  -426.8055901
16         -57.7786005  -646.4040972
17        -987.3374908   -57.7786005
18         914.7077830  -987.3374908
19         986.9104811   914.7077830
20        -344.3056473   986.9104811
21        -426.3632268  -344.3056473
22        -945.5315003  -426.3632268
23        -192.5329957  -945.5315003
24        1083.1047157  -192.5329957
25        1146.6922777  1083.1047157
26        1263.0323865  1146.6922777
27        1489.1568312  1263.0323865
28        -324.3933767  1489.1568312
29       -1070.2613160  -324.3933767
30        1278.1301029 -1070.2613160
31         802.0417678  1278.1301029
32         -89.8764086   802.0417678
33        -282.7074167   -89.8764086
34        -515.5876176  -282.7074167
35       -1073.1536856  -515.5876176
36        -998.4279162 -1073.1536856
37       -1074.5627530  -998.4279162
38        -322.8913735 -1074.5627530
39          -3.4485726  -322.8913735
40          16.7143046    -3.4485726
41       -1059.3955538    16.7143046
42       -2127.1692536 -1059.3955538
43        -919.6256041 -2127.1692536
44       -1660.6179372  -919.6256041
45        2391.2083114 -1660.6179372
46        2181.7629968  2391.2083114
47        2313.8554150  2181.7629968
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/7qeol1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/8527g1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/9tme81353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/wessaorg/rcomp/tmp/10bc9e1353353270.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/wessaorg/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/wessaorg/rcomp/tmp/11sfri1353353270.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/wessaorg/rcomp/tmp/12z7ge1353353270.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/wessaorg/rcomp/tmp/13q07e1353353270.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/wessaorg/rcomp/tmp/14q2hu1353353270.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/wessaorg/rcomp/tmp/151s8u1353353270.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/wessaorg/rcomp/tmp/166elx1353353270.tab") 
+ }
> 
> try(system("convert tmp/1cskb1353353270.ps tmp/1cskb1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/2fghp1353353270.ps tmp/2fghp1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/3sjql1353353270.ps tmp/3sjql1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/4wgqe1353353270.ps tmp/4wgqe1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/5tiui1353353270.ps tmp/5tiui1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/6b2zo1353353270.ps tmp/6b2zo1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/7qeol1353353270.ps tmp/7qeol1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/8527g1353353270.ps tmp/8527g1353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/9tme81353353270.ps tmp/9tme81353353270.png",intern=TRUE))
character(0)
> try(system("convert tmp/10bc9e1353353270.ps tmp/10bc9e1353353270.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  5.851   1.107   6.974