R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(97687 + ,70863 + ,28779 + ,19459 + ,35054 + ,49638 + ,119087 + ,90582 + ,34943 + ,13292 + ,33932 + ,98512 + ,70806 + ,28802 + ,19266 + ,34984 + ,49566 + ,117267 + ,89214 + ,35155 + ,13124 + ,33287 + ,98673 + ,69484 + ,28027 + ,18661 + ,32996 + ,48268 + ,116417 + ,87633 + ,33835 + ,12934 + ,32871 + ,96028 + ,70150 + ,28551 + ,18153 + ,32864 + ,49060 + ,114582 + ,86279 + ,34146 + ,12654 + ,31738 + ,98014 + ,69210 + ,28159 + ,18151 + ,31943 + ,48473 + ,114804 + ,86370 + ,33357 + ,12649 + ,31645 + ,95580 + ,68733 + ,28354 + ,18431 + ,32032 + ,49063 + ,115956 + ,87056 + ,33275 + ,12828 + ,31634 + ,97838 + ,75930 + ,32439 + ,19867 + ,37740 + ,55813 + ,121919 + ,91972 + ,38126 + ,13997 + ,33926 + ,97760 + ,76162 + ,33368 + ,20508 + ,37430 + ,55878 + ,124049 + ,93651 + ,37798 + ,14484 + ,34721 + ,99913 + ,73891 + ,31846 + ,20761 + ,35681 + ,53075 + ,124286 + ,94551 + ,36087 + ,14733 + ,35092 + ,97588 + ,67348 + ,28765 + ,20390 + ,32042 + ,47957 + ,121491 + ,91188 + ,32683 + ,14207 + ,33966 + ,93942 + ,64297 + ,27107 + ,19781 + ,30623 + ,45030 + ,118314 + ,88686 + ,30865 + ,13854 + ,33243 + ,93656 + ,63111 + ,26368 + ,19147 + ,30335 + ,44401 + ,116786 + ,86821 + ,30381 + ,13619 + ,32649 + ,93365 + ,63263 + ,26444 + ,19359 + ,30294 + ,44364 + ,118038 + ,88490 + ,30216 + ,13679 + ,33064 + ,92881 + ,60733 + ,25326 + ,19110 + ,28507 + ,42489 + ,116710 + ,88003 + ,28631 + ,13417 + ,33047 + ,93120 + ,58521 + ,24375 + ,18179 + ,26903 + ,40994 + ,112999 + ,84371 + ,27313 + ,12957 + ,31941 + ,91063 + ,56734 + ,23899 + ,18342 + ,25504 + ,40001 + ,113754 + ,85368 + ,26470 + ,12833 + ,31951 + ,90930 + ,55327 + ,23065 + ,17765 + ,24488 + ,38675 + ,110388 + ,81981 + ,25747 + ,12147 + ,30525 + ,91946 + ,55257 + ,23279 + ,16691 + ,25011 + ,38933 + ,104055 + ,76861 + ,25573 + ,11735 + ,29321 + ,94624 + ,64301 + ,28134 + ,18529 + ,31224 + ,47441 + ,112205 + ,82785 + ,31200 + ,12766 + ,32153 + ,95484 + ,64261 + ,28438 + ,19177 + ,31192 + ,47431 + ,115302 + ,85314 + ,31066 + ,13444 + ,33482 + ,95862 + ,59119 + ,25717 + ,18764 + ,27630 + ,42799 + ,113290 + ,84691 + ,27251 + ,13584 + ,32950 + ,95530 + ,56530 + ,24125 + ,18448 + ,26423 + ,40844 + ,111036 + ,82758 + ,25554 + ,13355 + ,32467 + ,94574 + ,54445 + ,23050 + ,17574 + ,25703 + ,39053 + ,107273 + ,79645 + ,24193 + ,12830 + ,31506 + ,94677 + ,55462 + ,23489 + ,17561 + ,26834 + ,40408 + ,107007 + ,79663 + ,25104 + ,12649 + ,31404 + ,93845 + ,55333 + ,23238 + ,17784 + ,26563 + ,40033 + ,108862 + ,81661 + ,24534 + ,13072 + ,31997 + ,91533 + ,54048 + ,22625 + ,17786 + ,25515 + ,38550 + ,108383 + ,81269 + ,23444 + ,12803 + ,31605 + ,91214 + ,53213 + ,22223 + ,16748 + ,24583 + ,38694 + ,103508 + ,77079 + ,23201 + ,12217 + ,29942 + ,90922 + ,52764 + ,22036 + ,16788 + ,23834 + ,38156 + ,103459 + ,77499 + ,22822 + ,12041 + ,29922 + ,89563 + ,49933 + ,20921 + ,15966 + ,22274 + ,36027 + ,99384 + ,73724 + ,21846 + ,11233 + ,28486 + ,89945 + ,51515 + ,21982 + ,16291 + ,23943 + ,37659 + ,99649 + ,73841 + ,23015 + ,11224 + ,28516 + ,91850 + ,59302 + ,25828 + ,17939 + ,29226 + ,44630 + ,107542 + ,80755 + ,27544 + ,12593 + ,31170 + ,92505 + ,59681 + ,26099 + ,18171 + ,29528 + ,44467 + ,108831 + ,81806 + ,27294 + ,13126 + ,32082 + ,92437 + ,56195 + ,24168 + ,17691 + ,27446 + ,41585 + ,107473 + ,81450 + ,24936 + ,13053 + ,31511 + ,93876 + ,55210 + ,23333 + ,17095 + ,26148 + ,40133 + ,104079 + ,78725 + ,24538 + ,12527 + ,30510 + ,93561 + ,54698 + ,22695 + ,17007 + ,26303 + ,39012 + ,103497 + ,78109 + ,24119 + ,12522 + ,30343 + ,94119 + ,57875 + ,23884 + ,16992 + ,28112 + ,41902 + ,104741 + ,79089 + ,26264 + ,12722 + ,30441 + ,95264 + ,60611 + ,24835 + ,17118 + ,29610 + ,43440 + ,105625 + ,79831 + ,27916 + ,13060 + ,30912 + ,96089 + ,61857 + ,24930 + ,17349 + ,29902 + ,44214 + ,105908 + ,80080 + ,28323 + ,13006 + ,30980 + ,97160 + ,62885 + ,25283 + ,17399 + ,30065 + ,44529 + ,106028 + ,80377 + ,28801 + ,12870 + ,30925 + ,98644 + ,62313 + ,25056 + ,17547 + ,29027 + ,44052 + ,106619 + ,81034 + ,28458 + ,12929 + ,30856 + ,96266 + ,62056 + ,24583 + ,16962 + ,28238 + ,43318 + ,103930 + ,78207 + ,27810 + ,12365 + ,29862 + ,97938 + ,64702 + ,25967 + ,17125 + ,29823 + ,45333 + ,104216 + ,79197 + ,29484 + ,12384 + ,30045 + ,99757 + ,72334 + ,30042 + ,19119 + ,35004 + ,52043 + ,112086 + ,85448 + ,34109 + ,13801 + ,32827 + ,101550 + ,73577 + ,31011 + ,19691 + ,35596 + ,52545 + ,113824 + ,86899 + ,34170 + ,14421 + ,33310 + ,102449 + ,70290 + ,29404 + ,19274 + ,33112 + ,49331 + ,111904 + ,85899 + ,31989 + ,14097 + ,32774 + ,102416 + ,68633 + ,28233 + ,18743 + ,31710 + ,47736 + ,108435 + ,82824 + ,30591 + ,13656 + ,31501 + ,102491 + ,68311 + ,27552 + ,18577 + ,31794 + ,46786 + ,106798 + ,80785 + ,29999 + ,13375 + ,31092 + ,102495 + ,73335 + ,29009 + ,18629 + ,34412 + ,50367 + ,107841 + ,81061 + ,33253 + ,13493 + ,31198 + ,104552 + ,71257 + ,28645 + ,19245 + ,33735 + ,48695 + ,111377 + ,84209 + ,31988 + ,13885 + ,32524 + ,104798 + ,70743 + ,28472 + ,18998 + ,33143 + ,48439 + ,109589 + ,82931 + ,31791 + ,13788 + ,32069 + ,104947 + ,68932 + ,27613 + ,18662 + ,31682 + ,46993 + ,107481 + ,81327 + ,30596 + ,13529 + ,31488 + ,103950 + ,68045 + ,27078 + ,17937 + ,30483 + ,46454 + ,105055 + ,78790 + ,30136 + ,13090 + ,30513 + ,102858 + ,66338 + ,26260 + ,17421 + ,29281 + ,44895 + ,102265 + ,76645 + ,28948 + ,12529 + ,29594 + ,106952 + ,67339 + ,27078 + ,17708 + ,29589 + ,45313 + ,102323 + ,76614 + ,29244 + ,12690 + ,29836 + ,110901 + ,75744 + ,31018 + ,19608 + ,35155 + ,52826 + ,110832 + ,83558 + ,34396 + ,14137 + ,32816 + ,107706 + ,76098 + ,31546 + ,20209 + ,35198 + ,52560 + ,112899 + ,85307 + ,34125 + ,14887 + ,33843 + ,111267 + ,71483 + ,29293 + ,19983 + ,32032 + ,48224 + ,110949 + ,84348 + ,30836 + ,14661 + ,33035 + ,107643 + ,69240 + ,28528 + ,19256 + ,30642 + ,46029 + ,106594 + ,81247 + ,29116 + ,13827 + ,31546 + ,105387 + ,66421 + ,27151 + ,18582 + ,30011 + ,44262 + ,104743 + ,79685 + ,27925 + ,13530 + ,30907 + ,105718 + ,67840 + ,27241 + ,18430 + ,30464 + ,45453 + ,103932 + ,79365 + ,28836 + ,13383 + ,30512 + ,106039 + ,69663 + ,27640 + ,18154 + ,30981 + ,45671 + ,104727 + ,79577 + ,29134 + ,13569 + ,30499 + ,106203 + ,68564 + ,27106 + ,18023 + ,30010 + ,44620 + ,103163 + ,78666 + ,28180 + ,13324 + ,30111 + ,105558 + ,67149 + ,26457 + ,17821 + ,28403 + ,43467 + ,102364 + ,78790 + ,27208 + ,13166 + ,29941 + ,105230 + ,65656 + ,25897 + ,17482 + ,26988 + ,42542 + ,100650 + ,77396 + ,26744 + ,12777 + ,29215 + ,104864 + ,64412 + ,25227 + ,17243 + ,25903 + ,41161 + ,99513 + ,75712 + ,25711 + ,12390 + ,28413 + ,104374 + ,63910 + ,25405 + ,17097 + ,25893 + ,41407 + ,98565 + ,75456 + ,25895 + ,12225 + ,28427 + ,107450 + ,71415 + ,29466 + ,18885 + ,31220 + ,48444 + ,106846 + ,82648 + ,30979 + ,13706 + ,31214 + ,108173 + ,71369 + ,29824 + ,19738 + ,31486 + ,47924 + ,110051 + ,84929 + ,30848 + ,14431 + ,32529 + ,108629 + ,68474 + ,28357 + ,19359 + ,29343 + ,45206 + ,106968 + ,82731 + ,28760 + ,13860 + ,31593 + ,107847 + ,66073 + ,27117 + ,18854 + ,27972 + ,42923 + ,104773 + ,80655 + ,27483 + ,13303 + ,30612 + ,107394 + ,64685 + ,26136 + ,18670 + ,27699 + ,41532 + ,103209 + ,79635 + ,26372 + ,13075 + ,30305 + ,106278 + ,66445 + ,26481 + ,18338 + ,28746 + ,42860 + ,102176 + ,78882 + ,27455 + ,13096 + ,29978 + ,107733 + ,70281 + ,27876 + ,19102 + ,30786 + ,45173 + ,105190 + ,81507 + ,29467 + ,13652 + ,30882 + ,107573 + ,70149 + ,27531 + ,19070 + ,30055 + ,45079 + ,104718 + ,81284 + ,29106 + ,13568 + ,30552 + ,107500 + ,68677 + ,26899 + ,18232 + ,28534 + ,43751 + ,101671 + ,79593 + ,28117 + ,13034 + ,29724 + ,106382 + ,67404 + ,26335 + ,17990 + ,27189 + ,43087 + ,100434 + ,78122 + ,27380 + ,12804 + ,29225 + ,104412 + ,66627 + ,26044 + ,17740 + ,26378 + ,42257 + ,98870 + ,77192 + ,26916 + ,12520 + ,28720 + ,105871 + ,66856 + ,26429 + ,17649 + ,26523 + ,42563 + ,98374 + ,77669 + ,27051 + ,12622 + ,28848 + ,108767 + ,73889 + ,29970 + ,19729 + ,30999 + ,48299 + ,107670 + ,84926 + ,31262 + ,14285 + ,31948 + ,109728 + ,76518 + ,31450 + ,20370 + ,33356 + ,50385 + ,110188 + ,86563 + ,32616 + ,14767 + ,32773 + ,109769 + ,74592 + ,29910 + ,20060 + ,31794 + ,48600 + ,106972 + ,84766 + ,31326 + ,14377 + ,31609 + ,109609 + ,73417 + ,28905 + ,19441 + ,30973 + ,46726 + ,104495 + ,82590 + ,30485 + ,13854 + ,30982) + ,dim=c(11 + ,82) + ,dimnames=list(c('Werkloosheid_BRUSSELS_HOOFDSTEDELIJK_GEWEST' + ,'Werkloosheid_ANTWERPEN' + ,'Werkloosheid_VLAAMS-BRABANT' + ,'Werkloosheid_WAALS-BRABANT' + ,'Werkloosheid_WEST-VLAANDEREN' + ,'Werkloosheid_OOST-VLAANDEREN' + ,'Werkloosheid_HENEGOUWEN' + ,'Werkloosheid_LUIK' + ,'Werkloosheid_LIMBURG' + ,'Werkloosheid_LUXEMBURG' + ,'Werkloosheid_NAMEN') + ,1:82)) > y <- array(NA,dim=c(11,82),dimnames=list(c('Werkloosheid_BRUSSELS_HOOFDSTEDELIJK_GEWEST','Werkloosheid_ANTWERPEN','Werkloosheid_VLAAMS-BRABANT','Werkloosheid_WAALS-BRABANT','Werkloosheid_WEST-VLAANDEREN','Werkloosheid_OOST-VLAANDEREN','Werkloosheid_HENEGOUWEN','Werkloosheid_LUIK','Werkloosheid_LIMBURG','Werkloosheid_LUXEMBURG','Werkloosheid_NAMEN'),1:82)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '1' > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from 'package:base': as.Date, as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x Werkloosheid_BRUSSELS_HOOFDSTEDELIJK_GEWEST Werkloosheid_ANTWERPEN 1 97687 70863 2 98512 70806 3 98673 69484 4 96028 70150 5 98014 69210 6 95580 68733 7 97838 75930 8 97760 76162 9 99913 73891 10 97588 67348 11 93942 64297 12 93656 63111 13 93365 63263 14 92881 60733 15 93120 58521 16 91063 56734 17 90930 55327 18 91946 55257 19 94624 64301 20 95484 64261 21 95862 59119 22 95530 56530 23 94574 54445 24 94677 55462 25 93845 55333 26 91533 54048 27 91214 53213 28 90922 52764 29 89563 49933 30 89945 51515 31 91850 59302 32 92505 59681 33 92437 56195 34 93876 55210 35 93561 54698 36 94119 57875 37 95264 60611 38 96089 61857 39 97160 62885 40 98644 62313 41 96266 62056 42 97938 64702 43 99757 72334 44 101550 73577 45 102449 70290 46 102416 68633 47 102491 68311 48 102495 73335 49 104552 71257 50 104798 70743 51 104947 68932 52 103950 68045 53 102858 66338 54 106952 67339 55 110901 75744 56 107706 76098 57 111267 71483 58 107643 69240 59 105387 66421 60 105718 67840 61 106039 69663 62 106203 68564 63 105558 67149 64 105230 65656 65 104864 64412 66 104374 63910 67 107450 71415 68 108173 71369 69 108629 68474 70 107847 66073 71 107394 64685 72 106278 66445 73 107733 70281 74 107573 70149 75 107500 68677 76 106382 67404 77 104412 66627 78 105871 66856 79 108767 73889 80 109728 76518 81 109769 74592 82 109609 73417 Werkloosheid_VLAAMS-BRABANT Werkloosheid_WAALS-BRABANT 1 28779 19459 2 28802 19266 3 28027 18661 4 28551 18153 5 28159 18151 6 28354 18431 7 32439 19867 8 33368 20508 9 31846 20761 10 28765 20390 11 27107 19781 12 26368 19147 13 26444 19359 14 25326 19110 15 24375 18179 16 23899 18342 17 23065 17765 18 23279 16691 19 28134 18529 20 28438 19177 21 25717 18764 22 24125 18448 23 23050 17574 24 23489 17561 25 23238 17784 26 22625 17786 27 22223 16748 28 22036 16788 29 20921 15966 30 21982 16291 31 25828 17939 32 26099 18171 33 24168 17691 34 23333 17095 35 22695 17007 36 23884 16992 37 24835 17118 38 24930 17349 39 25283 17399 40 25056 17547 41 24583 16962 42 25967 17125 43 30042 19119 44 31011 19691 45 29404 19274 46 28233 18743 47 27552 18577 48 29009 18629 49 28645 19245 50 28472 18998 51 27613 18662 52 27078 17937 53 26260 17421 54 27078 17708 55 31018 19608 56 31546 20209 57 29293 19983 58 28528 19256 59 27151 18582 60 27241 18430 61 27640 18154 62 27106 18023 63 26457 17821 64 25897 17482 65 25227 17243 66 25405 17097 67 29466 18885 68 29824 19738 69 28357 19359 70 27117 18854 71 26136 18670 72 26481 18338 73 27876 19102 74 27531 19070 75 26899 18232 76 26335 17990 77 26044 17740 78 26429 17649 79 29970 19729 80 31450 20370 81 29910 20060 82 28905 19441 Werkloosheid_WEST-VLAANDEREN Werkloosheid_OOST-VLAANDEREN 1 35054 49638 2 34984 49566 3 32996 48268 4 32864 49060 5 31943 48473 6 32032 49063 7 37740 55813 8 37430 55878 9 35681 53075 10 32042 47957 11 30623 45030 12 30335 44401 13 30294 44364 14 28507 42489 15 26903 40994 16 25504 40001 17 24488 38675 18 25011 38933 19 31224 47441 20 31192 47431 21 27630 42799 22 26423 40844 23 25703 39053 24 26834 40408 25 26563 40033 26 25515 38550 27 24583 38694 28 23834 38156 29 22274 36027 30 23943 37659 31 29226 44630 32 29528 44467 33 27446 41585 34 26148 40133 35 26303 39012 36 28112 41902 37 29610 43440 38 29902 44214 39 30065 44529 40 29027 44052 41 28238 43318 42 29823 45333 43 35004 52043 44 35596 52545 45 33112 49331 46 31710 47736 47 31794 46786 48 34412 50367 49 33735 48695 50 33143 48439 51 31682 46993 52 30483 46454 53 29281 44895 54 29589 45313 55 35155 52826 56 35198 52560 57 32032 48224 58 30642 46029 59 30011 44262 60 30464 45453 61 30981 45671 62 30010 44620 63 28403 43467 64 26988 42542 65 25903 41161 66 25893 41407 67 31220 48444 68 31486 47924 69 29343 45206 70 27972 42923 71 27699 41532 72 28746 42860 73 30786 45173 74 30055 45079 75 28534 43751 76 27189 43087 77 26378 42257 78 26523 42563 79 30999 48299 80 33356 50385 81 31794 48600 82 30973 46726 Werkloosheid_HENEGOUWEN Werkloosheid_LUIK Werkloosheid_LIMBURG 1 119087 90582 34943 2 117267 89214 35155 3 116417 87633 33835 4 114582 86279 34146 5 114804 86370 33357 6 115956 87056 33275 7 121919 91972 38126 8 124049 93651 37798 9 124286 94551 36087 10 121491 91188 32683 11 118314 88686 30865 12 116786 86821 30381 13 118038 88490 30216 14 116710 88003 28631 15 112999 84371 27313 16 113754 85368 26470 17 110388 81981 25747 18 104055 76861 25573 19 112205 82785 31200 20 115302 85314 31066 21 113290 84691 27251 22 111036 82758 25554 23 107273 79645 24193 24 107007 79663 25104 25 108862 81661 24534 26 108383 81269 23444 27 103508 77079 23201 28 103459 77499 22822 29 99384 73724 21846 30 99649 73841 23015 31 107542 80755 27544 32 108831 81806 27294 33 107473 81450 24936 34 104079 78725 24538 35 103497 78109 24119 36 104741 79089 26264 37 105625 79831 27916 38 105908 80080 28323 39 106028 80377 28801 40 106619 81034 28458 41 103930 78207 27810 42 104216 79197 29484 43 112086 85448 34109 44 113824 86899 34170 45 111904 85899 31989 46 108435 82824 30591 47 106798 80785 29999 48 107841 81061 33253 49 111377 84209 31988 50 109589 82931 31791 51 107481 81327 30596 52 105055 78790 30136 53 102265 76645 28948 54 102323 76614 29244 55 110832 83558 34396 56 112899 85307 34125 57 110949 84348 30836 58 106594 81247 29116 59 104743 79685 27925 60 103932 79365 28836 61 104727 79577 29134 62 103163 78666 28180 63 102364 78790 27208 64 100650 77396 26744 65 99513 75712 25711 66 98565 75456 25895 67 106846 82648 30979 68 110051 84929 30848 69 106968 82731 28760 70 104773 80655 27483 71 103209 79635 26372 72 102176 78882 27455 73 105190 81507 29467 74 104718 81284 29106 75 101671 79593 28117 76 100434 78122 27380 77 98870 77192 26916 78 98374 77669 27051 79 107670 84926 31262 80 110188 86563 32616 81 106972 84766 31326 82 104495 82590 30485 Werkloosheid_LUXEMBURG Werkloosheid_NAMEN t 1 13292 33932 1 2 13124 33287 2 3 12934 32871 3 4 12654 31738 4 5 12649 31645 5 6 12828 31634 6 7 13997 33926 7 8 14484 34721 8 9 14733 35092 9 10 14207 33966 10 11 13854 33243 11 12 13619 32649 12 13 13679 33064 13 14 13417 33047 14 15 12957 31941 15 16 12833 31951 16 17 12147 30525 17 18 11735 29321 18 19 12766 32153 19 20 13444 33482 20 21 13584 32950 21 22 13355 32467 22 23 12830 31506 23 24 12649 31404 24 25 13072 31997 25 26 12803 31605 26 27 12217 29942 27 28 12041 29922 28 29 11233 28486 29 30 11224 28516 30 31 12593 31170 31 32 13126 32082 32 33 13053 31511 33 34 12527 30510 34 35 12522 30343 35 36 12722 30441 36 37 13060 30912 37 38 13006 30980 38 39 12870 30925 39 40 12929 30856 40 41 12365 29862 41 42 12384 30045 42 43 13801 32827 43 44 14421 33310 44 45 14097 32774 45 46 13656 31501 46 47 13375 31092 47 48 13493 31198 48 49 13885 32524 49 50 13788 32069 50 51 13529 31488 51 52 13090 30513 52 53 12529 29594 53 54 12690 29836 54 55 14137 32816 55 56 14887 33843 56 57 14661 33035 57 58 13827 31546 58 59 13530 30907 59 60 13383 30512 60 61 13569 30499 61 62 13324 30111 62 63 13166 29941 63 64 12777 29215 64 65 12390 28413 65 66 12225 28427 66 67 13706 31214 67 68 14431 32529 68 69 13860 31593 69 70 13303 30612 70 71 13075 30305 71 72 13096 29978 72 73 13652 30882 73 74 13568 30552 74 75 13034 29724 75 76 12804 29225 76 77 12520 28720 77 78 12622 28848 78 79 14285 31948 79 80 14767 32773 80 81 14377 31609 81 82 13854 30982 82 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) Werkloosheid_ANTWERPEN 66762.2192 1.5839 `Werkloosheid_VLAAMS-BRABANT` `Werkloosheid_WAALS-BRABANT` 0.3819 0.3971 `Werkloosheid_WEST-VLAANDEREN` `Werkloosheid_OOST-VLAANDEREN` -0.5779 -1.0398 Werkloosheid_HENEGOUWEN Werkloosheid_LUIK -0.3012 -0.8173 Werkloosheid_LIMBURG Werkloosheid_LUXEMBURG -0.3114 0.7342 Werkloosheid_NAMEN t 2.4451 -22.4883 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -2726.69 -809.70 -14.43 683.65 2792.63 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 66762.2192 12605.0318 5.296 1.3e-06 *** Werkloosheid_ANTWERPEN 1.5839 0.1985 7.979 2.0e-11 *** `Werkloosheid_VLAAMS-BRABANT` 0.3819 0.5266 0.725 0.470809 `Werkloosheid_WAALS-BRABANT` 0.3971 0.9075 0.438 0.663024 `Werkloosheid_WEST-VLAANDEREN` -0.5779 0.3126 -1.849 0.068694 . `Werkloosheid_OOST-VLAANDEREN` -1.0398 0.3880 -2.680 0.009180 ** Werkloosheid_HENEGOUWEN -0.3012 0.3196 -0.942 0.349258 Werkloosheid_LUIK -0.8173 0.2096 -3.900 0.000218 *** Werkloosheid_LIMBURG -0.3114 0.5016 -0.621 0.536706 Werkloosheid_LUXEMBURG 0.7342 1.0684 0.687 0.494199 Werkloosheid_NAMEN 2.4451 0.6145 3.979 0.000167 *** t -22.4883 47.1239 -0.477 0.634695 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1260 on 70 degrees of freedom Multiple R-squared: 0.9657, Adjusted R-squared: 0.9603 F-statistic: 179 on 11 and 70 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 0.65625232 0.687495357 0.343747679 [2,] 0.49187336 0.983746724 0.508126638 [3,] 0.34987766 0.699755312 0.650122344 [4,] 0.23067494 0.461349888 0.769325056 [5,] 0.28156841 0.563136829 0.718431585 [6,] 0.20906548 0.418130960 0.790934520 [7,] 0.13659021 0.273180416 0.863409792 [8,] 0.09677432 0.193548641 0.903225679 [9,] 0.07609223 0.152184461 0.923907770 [10,] 0.05564439 0.111288771 0.944355614 [11,] 0.04053986 0.081079730 0.959460135 [12,] 0.04009740 0.080194790 0.959902605 [13,] 0.09433468 0.188669352 0.905665324 [14,] 0.08713416 0.174268313 0.912865843 [15,] 0.07904110 0.158082202 0.920958899 [16,] 0.09936940 0.198738793 0.900630604 [17,] 0.07119509 0.142390177 0.928804911 [18,] 0.08814618 0.176292368 0.911853816 [19,] 0.10400592 0.208011837 0.895994081 [20,] 0.11694226 0.233884515 0.883057742 [21,] 0.13897928 0.277958551 0.861020724 [22,] 0.10518820 0.210376402 0.894811799 [23,] 0.09678787 0.193575733 0.903212133 [24,] 0.08431933 0.168638664 0.915680668 [25,] 0.06251864 0.125037271 0.937481365 [26,] 0.08176046 0.163520917 0.918239541 [27,] 0.09451879 0.189037589 0.905481206 [28,] 0.06809551 0.136191026 0.931904487 [29,] 0.09861579 0.197231580 0.901384210 [30,] 0.09061715 0.181234290 0.909382855 [31,] 0.09414196 0.188283916 0.905858042 [32,] 0.08058626 0.161172529 0.919413735 [33,] 0.08511652 0.170233034 0.914883483 [34,] 0.12211046 0.244220925 0.877889537 [35,] 0.24417432 0.488348641 0.755825680 [36,] 0.27201712 0.544034239 0.727982881 [37,] 0.30386705 0.607734107 0.696132946 [38,] 0.29318592 0.586371832 0.706814084 [39,] 0.60564738 0.788705244 0.394352622 [40,] 0.69999223 0.600015549 0.300007775 [41,] 0.91854701 0.162905982 0.081452991 [42,] 0.96961856 0.060762882 0.030381441 [43,] 0.99693729 0.006125419 0.003062710 [44,] 0.99347866 0.013042673 0.006521336 [45,] 0.99294763 0.014104736 0.007052368 [46,] 0.98778744 0.024425116 0.012212558 [47,] 0.97591010 0.048179808 0.024089904 [48,] 0.95478496 0.090430083 0.045215041 [49,] 0.94266423 0.114671549 0.057335775 [50,] 0.90228444 0.195431122 0.097715561 [51,] 0.82824409 0.343511820 0.171755910 [52,] 0.70540825 0.589183495 0.294591747 [53,] 0.76167764 0.476644717 0.238322358 > postscript(file="/var/fisher/rcomp/tmp/1b78h1353435015.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/284uc1353435015.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/3fxtb1353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/4q2ww1353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/5hvph1353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 82 Frequency = 1 1 2 3 4 5 6 -74.620175 915.849952 428.242571 -1086.876970 1544.910671 1145.788920 7 8 9 10 11 12 1076.757579 -456.774400 1055.211359 1503.801532 -1817.016814 -998.922062 13 14 15 16 17 18 -1052.495880 -1021.103142 -459.442995 -541.218841 141.525670 -693.862054 19 20 21 22 23 24 -1096.880031 -1342.555858 424.995551 780.979728 262.588206 1277.954304 25 26 27 28 29 30 387.222959 -1429.560838 -698.891751 -805.383583 -533.403578 -34.558397 31 32 33 34 35 36 -317.715891 -1882.957306 336.331198 1113.826322 437.502677 1045.682149 37 38 39 40 41 42 -81.160500 -72.733306 321.708826 2399.798035 -832.709297 44.049929 43 44 45 46 47 48 -1501.914830 -1296.015464 307.012237 553.139010 -590.284944 -2654.339605 49 50 51 52 53 54 195.027832 372.752722 818.866672 246.855237 -221.993152 1869.737735 55 56 57 58 59 60 2792.627758 -2726.687516 2524.269724 -158.331044 239.925315 723.733478 61 62 63 64 65 66 -936.718450 -791.806126 -883.047128 5.701228 124.840435 341.891200 67 68 69 70 71 72 1742.246058 739.443769 1781.753160 2384.955681 2263.658752 563.381762 73 74 75 76 77 78 -225.627319 -98.109411 305.822479 -345.079465 -2115.661562 -811.144823 79 80 81 82 -1417.148562 -1739.217629 -379.509771 -1318.889909 > postscript(file="/var/fisher/rcomp/tmp/6u31h1353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 82 Frequency = 1 lag(myerror, k = 1) myerror 0 -74.620175 NA 1 915.849952 -74.620175 2 428.242571 915.849952 3 -1086.876970 428.242571 4 1544.910671 -1086.876970 5 1145.788920 1544.910671 6 1076.757579 1145.788920 7 -456.774400 1076.757579 8 1055.211359 -456.774400 9 1503.801532 1055.211359 10 -1817.016814 1503.801532 11 -998.922062 -1817.016814 12 -1052.495880 -998.922062 13 -1021.103142 -1052.495880 14 -459.442995 -1021.103142 15 -541.218841 -459.442995 16 141.525670 -541.218841 17 -693.862054 141.525670 18 -1096.880031 -693.862054 19 -1342.555858 -1096.880031 20 424.995551 -1342.555858 21 780.979728 424.995551 22 262.588206 780.979728 23 1277.954304 262.588206 24 387.222959 1277.954304 25 -1429.560838 387.222959 26 -698.891751 -1429.560838 27 -805.383583 -698.891751 28 -533.403578 -805.383583 29 -34.558397 -533.403578 30 -317.715891 -34.558397 31 -1882.957306 -317.715891 32 336.331198 -1882.957306 33 1113.826322 336.331198 34 437.502677 1113.826322 35 1045.682149 437.502677 36 -81.160500 1045.682149 37 -72.733306 -81.160500 38 321.708826 -72.733306 39 2399.798035 321.708826 40 -832.709297 2399.798035 41 44.049929 -832.709297 42 -1501.914830 44.049929 43 -1296.015464 -1501.914830 44 307.012237 -1296.015464 45 553.139010 307.012237 46 -590.284944 553.139010 47 -2654.339605 -590.284944 48 195.027832 -2654.339605 49 372.752722 195.027832 50 818.866672 372.752722 51 246.855237 818.866672 52 -221.993152 246.855237 53 1869.737735 -221.993152 54 2792.627758 1869.737735 55 -2726.687516 2792.627758 56 2524.269724 -2726.687516 57 -158.331044 2524.269724 58 239.925315 -158.331044 59 723.733478 239.925315 60 -936.718450 723.733478 61 -791.806126 -936.718450 62 -883.047128 -791.806126 63 5.701228 -883.047128 64 124.840435 5.701228 65 341.891200 124.840435 66 1742.246058 341.891200 67 739.443769 1742.246058 68 1781.753160 739.443769 69 2384.955681 1781.753160 70 2263.658752 2384.955681 71 563.381762 2263.658752 72 -225.627319 563.381762 73 -98.109411 -225.627319 74 305.822479 -98.109411 75 -345.079465 305.822479 76 -2115.661562 -345.079465 77 -811.144823 -2115.661562 78 -1417.148562 -811.144823 79 -1739.217629 -1417.148562 80 -379.509771 -1739.217629 81 -1318.889909 -379.509771 82 NA -1318.889909 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] 915.849952 -74.620175 [2,] 428.242571 915.849952 [3,] -1086.876970 428.242571 [4,] 1544.910671 -1086.876970 [5,] 1145.788920 1544.910671 [6,] 1076.757579 1145.788920 [7,] -456.774400 1076.757579 [8,] 1055.211359 -456.774400 [9,] 1503.801532 1055.211359 [10,] -1817.016814 1503.801532 [11,] -998.922062 -1817.016814 [12,] -1052.495880 -998.922062 [13,] -1021.103142 -1052.495880 [14,] -459.442995 -1021.103142 [15,] -541.218841 -459.442995 [16,] 141.525670 -541.218841 [17,] -693.862054 141.525670 [18,] -1096.880031 -693.862054 [19,] -1342.555858 -1096.880031 [20,] 424.995551 -1342.555858 [21,] 780.979728 424.995551 [22,] 262.588206 780.979728 [23,] 1277.954304 262.588206 [24,] 387.222959 1277.954304 [25,] -1429.560838 387.222959 [26,] -698.891751 -1429.560838 [27,] -805.383583 -698.891751 [28,] -533.403578 -805.383583 [29,] -34.558397 -533.403578 [30,] -317.715891 -34.558397 [31,] -1882.957306 -317.715891 [32,] 336.331198 -1882.957306 [33,] 1113.826322 336.331198 [34,] 437.502677 1113.826322 [35,] 1045.682149 437.502677 [36,] -81.160500 1045.682149 [37,] -72.733306 -81.160500 [38,] 321.708826 -72.733306 [39,] 2399.798035 321.708826 [40,] -832.709297 2399.798035 [41,] 44.049929 -832.709297 [42,] -1501.914830 44.049929 [43,] -1296.015464 -1501.914830 [44,] 307.012237 -1296.015464 [45,] 553.139010 307.012237 [46,] -590.284944 553.139010 [47,] -2654.339605 -590.284944 [48,] 195.027832 -2654.339605 [49,] 372.752722 195.027832 [50,] 818.866672 372.752722 [51,] 246.855237 818.866672 [52,] -221.993152 246.855237 [53,] 1869.737735 -221.993152 [54,] 2792.627758 1869.737735 [55,] -2726.687516 2792.627758 [56,] 2524.269724 -2726.687516 [57,] -158.331044 2524.269724 [58,] 239.925315 -158.331044 [59,] 723.733478 239.925315 [60,] -936.718450 723.733478 [61,] -791.806126 -936.718450 [62,] -883.047128 -791.806126 [63,] 5.701228 -883.047128 [64,] 124.840435 5.701228 [65,] 341.891200 124.840435 [66,] 1742.246058 341.891200 [67,] 739.443769 1742.246058 [68,] 1781.753160 739.443769 [69,] 2384.955681 1781.753160 [70,] 2263.658752 2384.955681 [71,] 563.381762 2263.658752 [72,] -225.627319 563.381762 [73,] -98.109411 -225.627319 [74,] 305.822479 -98.109411 [75,] -345.079465 305.822479 [76,] -2115.661562 -345.079465 [77,] -811.144823 -2115.661562 [78,] -1417.148562 -811.144823 [79,] -1739.217629 -1417.148562 [80,] -379.509771 -1739.217629 [81,] -1318.889909 -379.509771 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 915.849952 -74.620175 2 428.242571 915.849952 3 -1086.876970 428.242571 4 1544.910671 -1086.876970 5 1145.788920 1544.910671 6 1076.757579 1145.788920 7 -456.774400 1076.757579 8 1055.211359 -456.774400 9 1503.801532 1055.211359 10 -1817.016814 1503.801532 11 -998.922062 -1817.016814 12 -1052.495880 -998.922062 13 -1021.103142 -1052.495880 14 -459.442995 -1021.103142 15 -541.218841 -459.442995 16 141.525670 -541.218841 17 -693.862054 141.525670 18 -1096.880031 -693.862054 19 -1342.555858 -1096.880031 20 424.995551 -1342.555858 21 780.979728 424.995551 22 262.588206 780.979728 23 1277.954304 262.588206 24 387.222959 1277.954304 25 -1429.560838 387.222959 26 -698.891751 -1429.560838 27 -805.383583 -698.891751 28 -533.403578 -805.383583 29 -34.558397 -533.403578 30 -317.715891 -34.558397 31 -1882.957306 -317.715891 32 336.331198 -1882.957306 33 1113.826322 336.331198 34 437.502677 1113.826322 35 1045.682149 437.502677 36 -81.160500 1045.682149 37 -72.733306 -81.160500 38 321.708826 -72.733306 39 2399.798035 321.708826 40 -832.709297 2399.798035 41 44.049929 -832.709297 42 -1501.914830 44.049929 43 -1296.015464 -1501.914830 44 307.012237 -1296.015464 45 553.139010 307.012237 46 -590.284944 553.139010 47 -2654.339605 -590.284944 48 195.027832 -2654.339605 49 372.752722 195.027832 50 818.866672 372.752722 51 246.855237 818.866672 52 -221.993152 246.855237 53 1869.737735 -221.993152 54 2792.627758 1869.737735 55 -2726.687516 2792.627758 56 2524.269724 -2726.687516 57 -158.331044 2524.269724 58 239.925315 -158.331044 59 723.733478 239.925315 60 -936.718450 723.733478 61 -791.806126 -936.718450 62 -883.047128 -791.806126 63 5.701228 -883.047128 64 124.840435 5.701228 65 341.891200 124.840435 66 1742.246058 341.891200 67 739.443769 1742.246058 68 1781.753160 739.443769 69 2384.955681 1781.753160 70 2263.658752 2384.955681 71 563.381762 2263.658752 72 -225.627319 563.381762 73 -98.109411 -225.627319 74 305.822479 -98.109411 75 -345.079465 305.822479 76 -2115.661562 -345.079465 77 -811.144823 -2115.661562 78 -1417.148562 -811.144823 79 -1739.217629 -1417.148562 80 -379.509771 -1739.217629 81 -1318.889909 -379.509771 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/7vn621353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/8o3291353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/9skr81353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/fisher/rcomp/tmp/104mj21353435016.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/fisher/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/11jhx11353435016.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/120b211353435016.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/13kkqf1353435016.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/14gase1353435017.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/fisher/rcomp/tmp/150qw81353435017.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/fisher/rcomp/tmp/16ncvs1353435017.tab") + } > > try(system("convert tmp/1b78h1353435015.ps tmp/1b78h1353435015.png",intern=TRUE)) character(0) > try(system("convert tmp/284uc1353435015.ps tmp/284uc1353435015.png",intern=TRUE)) character(0) > try(system("convert tmp/3fxtb1353435016.ps tmp/3fxtb1353435016.png",intern=TRUE)) character(0) > try(system("convert tmp/4q2ww1353435016.ps tmp/4q2ww1353435016.png",intern=TRUE)) character(0) > try(system("convert tmp/5hvph1353435016.ps tmp/5hvph1353435016.png",intern=TRUE)) character(0) > try(system("convert tmp/6u31h1353435016.ps tmp/6u31h1353435016.png",intern=TRUE)) character(0) > try(system("convert tmp/7vn621353435016.ps tmp/7vn621353435016.png",intern=TRUE)) character(0) > try(system("convert tmp/8o3291353435016.ps tmp/8o3291353435016.png",intern=TRUE)) character(0) > try(system("convert tmp/9skr81353435016.ps tmp/9skr81353435016.png",intern=TRUE)) character(0) > try(system("convert tmp/104mj21353435016.ps tmp/104mj21353435016.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 7.110 1.462 8.568