R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(14,14,15,13,8,7,3,3,4,4,0,-4,-14,-18,-8,-1,1,2,0,1,0,-1,-3,-3,-3,-4,-8,-9,-13,-18,-11,-9,-10,-13,-11,-5,-15,-6,-6,-3,-1,-3,-4,-6,0,-4,-2,-2,-6,-7,-6,-6,-3,-2,-5,-11,-11,-11,-10,-14,-8,-9,-5,-1,-2,-5,-4,-6,-2,-2,-2,-2,2,1,-8,-1,1,-1,2,2,1,-1,-2,-2,-1,-8,-4,-6,-3,-3,-7,-9,-11,-13,-11,-9,-17,-22,-25,-20,-24,-24,-22,-19,-18,-17,-11,-11,-12,-10,-15,-15,-15,-13,-8,-13,-9,-7,-4,-4,-2,0,-2,-3,1,-2,-1,1,-3,-4,-9,-9,-7,-14,-12,-16,-20,-12,-12,-10,-10,-13,-16) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '0' > par5 = '4' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '24' > par10 <- 'FALSE' > par9 <- '0' > par8 <- '0' > par7 <- '0' > par6 <- '0' > par5 <- '4' > par4 <- '0' > par3 <- '1' > par2 <- '1' > par1 <- '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") sigma^2 estimated as 13.22: log likelihood = -319.76, aic = 641.52 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 120 End = 143 Frequency = 1 [1] -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 $se Time Series: Start = 120 End = 143 Frequency = 1 [1] 3.635978 5.142050 6.297699 7.271957 8.130295 8.906292 9.619895 [8] 10.284100 10.907935 11.497973 12.059176 12.595399 13.109707 13.604585 [15] 14.082084 14.543914 14.991523 15.426150 15.848862 16.260590 16.662146 [22] 17.054250 17.437540 17.812584 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 120 End = 143 Frequency = 1 [1] -11.12652 -14.07842 -16.34349 -18.25304 -19.93538 -21.45633 -22.85499 [8] -24.15684 -25.37955 -26.53603 -27.63599 -28.68698 -29.69502 -30.66499 [15] -31.60088 -32.50607 -33.38339 -34.23525 -35.06377 -35.87076 -36.65781 [22] -37.42633 -38.17758 -38.91266 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 120 End = 143 Frequency = 1 [1] 3.126518 6.078418 8.343491 10.253035 11.935378 13.456332 14.854993 [8] 16.156836 17.379553 18.536028 19.635985 20.686981 21.695025 22.664988 [15] 23.600884 24.506071 25.383385 26.235254 27.063770 27.870756 28.657807 [22] 29.426331 30.177578 30.912664 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 14 14 15 13 8 7 3 3 4 4 0 -4 -14 -18 -8 -1 1 2 [19] 0 1 0 -1 -3 -3 -3 -4 -8 -9 -13 -18 -11 -9 -10 -13 -11 -5 [37] -15 -6 -6 -3 -1 -3 -4 -6 0 -4 -2 -2 -6 -7 -6 -6 -3 -2 [55] -5 -11 -11 -11 -10 -14 -8 -9 -5 -1 -2 -5 -4 -6 -2 -2 -2 -2 [73] 2 1 -8 -1 1 -1 2 2 1 -1 -2 -2 -1 -8 -4 -6 -3 -3 [91] -7 -9 -11 -13 -11 -9 -17 -22 -25 -20 -24 -24 -22 -19 -18 -17 -11 -11 [109] -12 -10 -15 -15 -15 -13 -8 -13 -9 -7 -4 -4 -4 -4 -4 -4 -4 -4 [127] -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 120 End = 143 Frequency = 1 [1] -0.9089946 -1.2855125 -1.5744248 -1.8179892 -2.0325737 -2.2265730 [7] -2.4049737 -2.5710250 -2.7269838 -2.8744933 -3.0147940 -3.1488497 [13] -3.2774266 -3.4011464 -3.5205210 -3.6359784 -3.7478808 -3.8565375 [19] -3.9622156 -4.0651474 -4.1655366 -4.2635626 -4.3593850 -4.4531459 > postscript(file="/var/fisher/rcomp/tmp/1ye4n1353960087.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/fisher/rcomp/tmp/2bl9c1353960087.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/fisher/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/3zjdf1353960087.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/4gvdn1353960087.tab") > > try(system("convert tmp/1ye4n1353960087.ps tmp/1ye4n1353960087.png",intern=TRUE)) character(0) > try(system("convert tmp/2bl9c1353960087.ps tmp/2bl9c1353960087.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.660 0.412 2.050