R version 3.0.2 (2013-09-25) -- "Frisbee Sailing" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(4,5,7,5,6,5,3,7,7,11,13,13,9,7,6,3,5,1,5,2,9,4,4,10,8,6,7,0,7,4,5,11,2,4,5,12,10,6,6,8,3,10,2,5,4,3,8,5,7,1,7,4,8,7,10,2,6,6,11,8,8,6,11,15,9,5,10,4,9,3,7,7,9,15,11,10,6,5,6,6,14,11,1,9,13,10,11,7,6,4,6,8,6,7,12,20,10,14,11,13,7,9,8,7,9,10,12,13,11,11,14,10,9,12,8,13,14,15,14,14,15,14,21,10,8,12,13,6,12,12) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '3' > par5 = '1' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '24' > par10 <- 'FALSE' > par9 <- '0' > par8 <- '0' > par7 <- '0' > par6 <- '3' > par5 <- '1' > par4 <- '0' > par3 <- '1' > par2 <- '1' > par1 <- '24' > #'GNU S' R Code compiled by R2WASP v. 1.2.327 () > #Author: root > #To cite this work: Wessa P., (2013), ARIMA Forecasting (v1.0.9) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > # > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 -0.5629 -0.2547 -0.1979 s.e. 0.0954 0.1072 0.0946 sigma^2 estimated as 12.76: log likelihood = -282.86, aic = 573.72 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 107 End = 130 Frequency = 1 [1] 9.125519 8.967247 9.081199 9.230431 9.148720 9.134151 9.133634 9.153807 [9] 9.145466 9.145125 9.143449 9.146130 9.145115 9.145335 9.144939 9.145307 [17] 9.145157 9.145226 9.145153 9.145206 9.145181 9.145196 9.145184 9.145192 $se Time Series: Start = 107 End = 130 Frequency = 1 [1] 3.571724 3.897993 4.286468 4.529408 4.945176 5.238657 5.540361 5.802222 [9] 6.075035 6.325550 6.571212 6.804002 7.032025 7.251393 7.465150 7.672322 [17] 7.874463 8.071314 8.263617 8.451448 8.635256 8.815196 8.991559 9.164513 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 107 End = 130 Frequency = 1 [1] 2.1249396 1.3271802 0.6797223 0.3527909 -0.5438254 -1.1336169 [7] -1.7254736 -2.2185480 -2.7616033 -3.2529525 -3.7361268 -4.1897138 [13] -4.6376530 -5.0673951 -5.4867537 -5.8924449 -6.2887892 -6.6745485 [19] -7.0515368 -7.4196313 -7.7799202 -8.1325876 -8.4782715 -8.8172532 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 107 End = 130 Frequency = 1 [1] 16.12610 16.60731 17.48268 18.10807 18.84127 19.40192 19.99274 20.52616 [9] 21.05254 21.54320 22.02303 22.48197 22.92788 23.35807 23.77663 24.18306 [17] 24.57910 24.96500 25.34184 25.71004 26.07028 26.42298 26.76864 27.10764 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 4.000000 5.000000 7.000000 5.000000 6.000000 5.000000 3.000000 [8] 7.000000 7.000000 11.000000 13.000000 13.000000 9.000000 7.000000 [15] 6.000000 3.000000 5.000000 1.000000 5.000000 2.000000 9.000000 [22] 4.000000 4.000000 10.000000 8.000000 6.000000 7.000000 0.000000 [29] 7.000000 4.000000 5.000000 11.000000 2.000000 4.000000 5.000000 [36] 12.000000 10.000000 6.000000 6.000000 8.000000 3.000000 10.000000 [43] 2.000000 5.000000 4.000000 3.000000 8.000000 5.000000 7.000000 [50] 1.000000 7.000000 4.000000 8.000000 7.000000 10.000000 2.000000 [57] 6.000000 6.000000 11.000000 8.000000 8.000000 6.000000 11.000000 [64] 15.000000 9.000000 5.000000 10.000000 4.000000 9.000000 3.000000 [71] 7.000000 7.000000 9.000000 15.000000 11.000000 10.000000 6.000000 [78] 5.000000 6.000000 6.000000 14.000000 11.000000 1.000000 9.000000 [85] 13.000000 10.000000 11.000000 7.000000 6.000000 4.000000 6.000000 [92] 8.000000 6.000000 7.000000 12.000000 20.000000 10.000000 14.000000 [99] 11.000000 13.000000 7.000000 9.000000 8.000000 7.000000 9.000000 [106] 10.000000 9.125519 8.967247 9.081199 9.230431 9.148720 9.134151 [113] 9.133634 9.153807 9.145466 9.145125 9.143449 9.146130 9.145115 [120] 9.145335 9.144939 9.145307 9.145157 9.145226 9.145153 9.145206 [127] 9.145181 9.145196 9.145184 9.145192 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 107 End = 130 Frequency = 1 [1] 0.3913996 0.4346923 0.4720156 0.4907039 0.5405320 0.5735242 0.6065889 [8] 0.6338589 0.6642674 0.6916854 0.7186798 0.7439214 0.7689378 0.7929062 [15] 0.8163148 0.8389355 0.8610527 0.8825712 0.9036062 0.9241397 0.9442411 [22] 0.9639154 0.9832016 1.0021127 > postscript(file="/var/wessaorg/rcomp/tmp/1t2g11386165540.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.spe <- array(0, dim=fx) > perf.scalederr <- array(0, dim=fx) > perf.mase <- array(0, dim=fx) > perf.mase1 <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.smape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.smape1 <- array(0,dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > perf.scaleddenom <- 0 > for (i in 2:fx) { + perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1]) + } > perf.scaleddenom = perf.scaleddenom / (fx-1) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i] + perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.smape[1] = abs(perf.spe[1]) > perf.mape1[1] = perf.mape[1] > perf.smape1[1] = perf.smape[1] > perf.mse[1] = perf.se[1] > perf.mase[1] = abs(perf.scalederr[1]) > perf.mase1[1] = perf.mase[1] > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i]) + perf.smape1[i] = perf.smape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i]) + perf.mase1[i] = perf.mase[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/wessaorg/rcomp/tmp/20v381386165540.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3tkr61386165540.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'sMAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.element(a,'ScaledE',1,header=TRUE) > a<-table.element(a,'MASE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.smape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.element(a,round(perf.scalederr[i],4)) + a<-table.element(a,round(perf.mase1[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4e73v1386165541.tab") > > try(system("convert tmp/1t2g11386165540.ps tmp/1t2g11386165540.png",intern=TRUE)) character(0) > try(system("convert tmp/20v381386165540.ps tmp/20v381386165540.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 2.833 0.599 3.395