R version 3.0.2 (2013-09-25) -- "Frisbee Sailing" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(41,39,50,40,43,38,44,35,39,35,29,49,50,59,63,32,39,47,53,60,57,52,70,90,74,62,55,84,94,70,108,139,120,97,126,149,158,124,140,109,114,77,120,133,110,92,97,78,99,107,112,90,98,125,155,190,236,189,174,178,136,161,171,149,184,155,276,224,213,279,268,287,238,213,257,293,212,246,353,339,308,247,257,322,298,273,312,249,286,279,309,401,309,328,353,354,327,324,285,243,241,287,355,460,364,487,452,391,500,451,375,372,302,316,398,394,431,431) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '1' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '0.1' > par1 = '12' > par10 <- 'FALSE' > par9 <- '1' > par8 <- '1' > par7 <- '1' > par6 <- '0' > par5 <- '12' > par4 <- '0' > par3 <- '1' > par2 <- '0.1' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.2.327 () > #Author: root > #To cite this work: Wessa P., (2013), ARIMA Forecasting (v1.0.9) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > # > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ma1 sar1 sma1 -0.4076 0.9967 -0.9552 s.e. 0.1065 0.0255 0.1742 sigma^2 estimated as 0.0008656: log likelihood = 215.27, aic = -422.54 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 107 End = 118 Frequency = 1 [1] 1.839784 1.854170 1.846240 1.842533 1.850478 1.833428 1.839680 1.837039 [9] 1.872201 1.882902 1.872343 1.868119 $se Time Series: Start = 107 End = 118 Frequency = 1 [1] 0.03013991 0.03503202 0.03930830 0.04315098 0.04667838 0.04995734 [7] 0.05303395 0.05594162 0.05870545 0.06134488 0.06387533 0.06630930 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 107 End = 118 Frequency = 1 [1] 1.780710 1.785507 1.769195 1.757957 1.758988 1.735512 1.735733 1.727394 [9] 1.757138 1.762666 1.747147 1.738153 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 107 End = 118 Frequency = 1 [1] 1.898858 1.922832 1.923284 1.927109 1.941967 1.931344 1.943627 1.946685 [9] 1.987263 2.003138 1.997538 1.998085 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 41.0000 39.0000 50.0000 40.0000 43.0000 38.0000 44.0000 35.0000 [9] 39.0000 35.0000 29.0000 49.0000 50.0000 59.0000 63.0000 32.0000 [17] 39.0000 47.0000 53.0000 60.0000 57.0000 52.0000 70.0000 90.0000 [25] 74.0000 62.0000 55.0000 84.0000 94.0000 70.0000 108.0000 139.0000 [33] 120.0000 97.0000 126.0000 149.0000 158.0000 124.0000 140.0000 109.0000 [41] 114.0000 77.0000 120.0000 133.0000 110.0000 92.0000 97.0000 78.0000 [49] 99.0000 107.0000 112.0000 90.0000 98.0000 125.0000 155.0000 190.0000 [57] 236.0000 189.0000 174.0000 178.0000 136.0000 161.0000 171.0000 149.0000 [65] 184.0000 155.0000 276.0000 224.0000 213.0000 279.0000 268.0000 287.0000 [73] 238.0000 213.0000 257.0000 293.0000 212.0000 246.0000 353.0000 339.0000 [81] 308.0000 247.0000 257.0000 322.0000 298.0000 273.0000 312.0000 249.0000 [89] 286.0000 279.0000 309.0000 401.0000 309.0000 328.0000 353.0000 354.0000 [97] 327.0000 324.0000 285.0000 243.0000 241.0000 287.0000 355.0000 460.0000 [105] 364.0000 487.0000 444.2913 480.2799 460.1301 450.9753 470.8022 429.1790 [113] 444.0408 437.7077 529.0830 560.1154 529.4844 517.6604 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 107 End = 118 Frequency = 1 [1] 0.1896395 0.2237410 0.2576827 0.2889928 0.3164514 0.3482213 0.3737899 [8] 0.4007910 0.4161440 0.4372875 0.4644304 0.4894245 > postscript(file="/var/fisher/rcomp/tmp/1yqwb1386358439.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.spe <- array(0, dim=fx) > perf.scalederr <- array(0, dim=fx) > perf.mase <- array(0, dim=fx) > perf.mase1 <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.smape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.smape1 <- array(0,dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > perf.scaleddenom <- 0 > for (i in 2:fx) { + perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1]) + } > perf.scaleddenom = perf.scaleddenom / (fx-1) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i] + perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.smape[1] = abs(perf.spe[1]) > perf.mape1[1] = perf.mape[1] > perf.smape1[1] = perf.smape[1] > perf.mse[1] = perf.se[1] > perf.mase[1] = abs(perf.scalederr[1]) > perf.mase1[1] = perf.mase[1] > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i]) + perf.smape1[i] = perf.smape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i]) + perf.mase1[i] = perf.mase[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/fisher/rcomp/tmp/280zb1386358439.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/fisher/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/3glc81386358439.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'sMAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.element(a,'ScaledE',1,header=TRUE) > a<-table.element(a,'MASE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.smape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.element(a,round(perf.scalederr[i],4)) + a<-table.element(a,round(perf.mase1[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/4xate1386358439.tab") > > try(system("convert tmp/1yqwb1386358439.ps tmp/1yqwb1386358439.png",intern=TRUE)) character(0) > try(system("convert tmp/280zb1386358439.ps tmp/280zb1386358439.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 3.308 0.755 4.128