R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- array(list(102 + ,122 + ,88 + ,1 + ,9 + ,102 + ,918 + ,88 + ,792 + ,9 + ,99 + ,114 + ,106 + ,1 + ,3 + ,99 + ,297 + ,106 + ,318 + ,3 + ,97 + ,140 + ,70 + ,1 + ,2 + ,97 + ,194 + ,70 + ,140 + ,2 + ,82 + ,143 + ,70 + ,1 + ,21 + ,82 + ,1722 + ,70 + ,1470 + ,21 + ,77 + ,122 + ,56 + ,1 + ,10 + ,77 + ,770 + ,56 + ,560 + ,10 + ,65 + ,127 + ,50 + ,1 + ,2 + ,65 + ,130 + ,50 + ,100 + ,2 + ,64 + ,113 + ,48 + ,1 + ,4 + ,64 + ,256 + ,48 + ,192 + ,4 + ,62 + ,118 + ,71 + ,1 + ,4 + ,62 + ,248 + ,71 + ,284 + ,4 + ,62 + ,161 + ,61 + ,1 + ,4 + ,62 + ,248 + ,61 + ,244 + ,4 + ,62 + ,134 + ,66 + ,1 + ,5 + ,62 + ,310 + ,66 + ,330 + ,5 + ,61 + ,96 + ,80 + ,1 + ,2 + ,61 + ,122 + ,80 + ,160 + ,2 + ,59 + ,104 + ,37 + ,1 + ,3 + ,59 + ,177 + ,37 + ,111 + ,3 + ,57 + ,135 + ,53 + ,1 + ,3 + ,57 + ,171 + ,53 + ,159 + ,3 + ,56 + ,110 + ,39 + ,1 + ,6 + ,56 + ,336 + ,39 + ,234 + ,6 + ,54 + ,128 + ,40 + ,1 + ,3 + ,54 + ,162 + ,40 + ,120 + ,3 + ,54 + ,142 + ,59 + ,1 + ,4 + ,54 + ,216 + ,59 + ,236 + ,4 + ,53 + ,117 + ,42 + ,1 + ,3 + ,53 + ,159 + ,42 + ,126 + ,3 + ,52 + ,94 + ,33 + ,1 + ,13 + ,52 + ,676 + ,33 + ,429 + ,13 + ,51 + ,135 + ,36 + ,1 + ,3 + ,51 + ,153 + ,36 + ,108 + ,3 + ,51 + ,121 + ,57 + ,1 + ,4 + ,51 + ,204 + ,57 + ,228 + ,4 + ,51 + ,103 + ,38 + ,1 + ,8 + ,51 + ,408 + ,38 + ,304 + ,8 + ,50 + ,118 + ,98 + ,1 + ,8 + ,50 + ,400 + ,98 + ,784 + ,8 + ,50 + ,127 + ,43 + ,1 + ,3 + ,50 + ,150 + ,43 + ,129 + ,3 + ,50 + ,116 + ,73 + ,1 + ,4 + ,50 + ,200 + ,73 + ,292 + ,4 + ,49 + ,129 + ,52 + ,1 + ,2 + ,49 + ,98 + ,52 + ,104 + ,2 + ,49 + ,115 + ,53 + ,1 + ,5 + ,49 + ,245 + ,53 + ,265 + ,5 + ,49 + ,135 + ,51 + ,1 + ,4 + ,49 + ,196 + ,51 + ,204 + ,4 + ,48 + ,133 + ,32 + ,1 + ,3 + ,48 + ,144 + ,32 + ,96 + ,3 + ,48 + ,113 + ,43 + ,1 + ,3 + ,48 + ,144 + ,43 + ,129 + ,3 + ,47 + ,111 + ,53 + ,1 + ,2 + ,47 + ,94 + ,53 + ,106 + ,2 + ,47 + ,92 + ,50 + ,1 + ,3 + ,47 + ,141 + ,50 + ,150 + ,3 + ,46 + ,118 + ,50 + ,1 + ,3 + ,46 + ,138 + ,50 + ,150 + ,3 + ,46 + ,134 + ,56 + ,1 + ,3 + ,46 + ,138 + ,56 + ,168 + ,3 + ,45 + ,106 + ,53 + ,1 + ,5 + ,45 + ,225 + ,53 + ,265 + ,5 + ,45 + ,137 + ,47 + ,1 + ,3 + ,45 + ,135 + ,47 + ,141 + ,3 + ,45 + ,100 + ,42 + ,1 + ,4 + ,45 + ,180 + ,42 + ,168 + ,4 + ,44 + ,102 + ,29 + ,1 + ,3 + ,44 + ,132 + ,29 + ,87 + ,3 + ,43 + ,134 + ,54 + ,1 + ,4 + ,43 + ,172 + ,54 + ,216 + ,4 + ,42 + ,130 + ,40 + ,1 + ,8 + ,42 + ,336 + ,40 + ,320 + ,8 + ,42 + ,144 + ,41 + ,1 + ,3 + ,42 + ,126 + ,41 + ,123 + ,3 + ,42 + ,120 + ,37 + ,1 + ,4 + ,42 + ,168 + ,37 + ,148 + ,4 + ,42 + ,91 + ,25 + ,1 + ,2 + ,42 + ,84 + ,25 + ,50 + ,2 + ,42 + ,100 + ,27 + ,1 + ,5 + ,42 + ,210 + ,27 + ,135 + ,5 + ,42 + ,134 + ,61 + ,1 + ,4 + ,42 + ,168 + ,61 + ,244 + ,4 + ,41 + ,161 + ,54 + ,1 + ,7 + ,41 + ,287 + ,54 + ,378 + ,7 + ,41 + ,128 + ,35 + ,1 + ,3 + ,41 + ,123 + ,35 + ,105 + ,3 + ,41 + ,124 + ,55 + ,1 + ,4 + ,41 + ,164 + ,55 + ,220 + ,4 + ,41 + ,115 + ,47 + ,1 + ,6 + ,41 + ,246 + ,47 + ,282 + ,6 + ,41 + ,123 + ,49 + ,1 + ,7 + ,41 + ,287 + ,49 + ,343 + ,7 + ,41 + ,117 + ,38 + ,1 + ,20 + ,41 + ,820 + ,38 + ,760 + ,20 + ,41 + ,111 + ,52 + ,1 + ,49 + ,41 + ,2009 + ,52 + ,2548 + ,49 + ,40 + ,146 + ,35 + ,1 + ,3 + ,40 + ,120 + ,35 + ,105 + ,3 + ,40 + ,101 + ,52 + ,1 + ,3 + ,40 + ,120 + ,52 + ,156 + ,3 + ,40 + ,131 + ,54 + ,1 + ,6 + ,40 + ,240 + ,54 + ,324 + ,6 + ,40 + ,122 + ,40 + ,1 + ,6 + ,40 + ,240 + ,40 + ,240 + ,6 + ,40 + ,78 + ,52 + ,1 + ,4 + ,40 + ,160 + ,52 + ,208 + ,4 + ,39 + ,120 + ,34 + ,1 + ,5 + ,39 + ,195 + ,34 + ,170 + ,5 + ,39 + ,115 + ,51 + ,1 + ,4 + ,39 + ,156 + ,51 + ,204 + ,4 + ,38 + ,142 + ,43 + ,1 + ,4 + ,38 + ,152 + ,43 + ,172 + ,4 + ,38 + ,94 + ,40 + ,1 + ,31 + ,38 + ,1178 + ,40 + ,1240 + ,31 + ,36 + ,114 + ,38 + ,1 + ,3 + ,36 + ,108 + ,38 + ,114 + ,3 + ,36 + ,108 + ,33 + ,1 + ,3 + ,36 + ,108 + ,33 + ,99 + ,3 + ,35 + ,119 + ,27 + ,1 + ,4 + ,35 + ,140 + ,27 + ,108 + ,4 + ,35 + ,117 + ,34 + ,1 + ,6 + ,35 + ,210 + ,34 + ,204 + ,6 + ,35 + ,86 + ,44 + ,1 + ,5 + ,35 + ,175 + ,44 + ,220 + ,5 + ,35 + ,138 + ,46 + ,1 + ,3 + ,35 + ,105 + ,46 + ,138 + ,3 + ,34 + ,119 + ,50 + ,1 + ,3 + ,34 + ,102 + ,50 + ,150 + ,3 + ,34 + ,117 + ,31 + ,1 + ,2 + ,34 + ,68 + ,31 + ,62 + ,2 + ,34 + ,117 + ,33 + ,1 + ,3 + ,34 + ,102 + ,33 + ,99 + ,3 + ,33 + ,76 + ,37 + ,1 + ,3 + ,33 + ,99 + ,37 + ,111 + ,3 + ,33 + ,119 + ,48 + ,1 + ,16 + ,33 + ,528 + ,48 + ,768 + ,16 + ,33 + ,119 + ,33 + ,1 + ,3 + ,33 + ,99 + ,33 + ,99 + ,3 + ,32 + ,124 + ,40 + ,1 + ,3 + ,32 + ,96 + ,40 + ,120 + ,3 + ,32 + ,116 + ,21 + ,1 + ,3 + ,32 + ,96 + ,21 + ,63 + ,3 + ,32 + ,118 + ,33 + ,1 + ,2 + ,32 + ,64 + ,33 + ,66 + ,2 + ,31 + ,102 + ,41 + ,1 + ,5 + ,31 + ,155 + ,41 + ,205 + ,5 + ,31 + ,116 + ,35 + ,1 + ,3 + ,31 + ,93 + ,35 + ,105 + ,3 + ,30 + ,103 + ,60 + ,1 + ,4 + ,30 + ,120 + ,60 + ,240 + ,4 + ,30 + ,117 + ,30 + ,1 + ,5 + ,30 + ,150 + ,30 + ,150 + ,5 + ,30 + ,108 + ,45 + ,1 + ,2 + ,30 + ,60 + ,45 + ,90 + ,2 + ,30 + ,122 + ,26 + ,1 + ,3 + ,30 + ,90 + ,26 + ,78 + ,3 + ,29 + ,90 + ,41 + ,1 + ,3 + ,29 + ,87 + ,41 + ,123 + ,3 + ,28 + ,133 + ,48 + ,1 + ,14 + ,28 + ,392 + ,48 + ,672 + ,14 + ,28 + ,116 + ,10 + ,1 + ,8 + ,28 + ,224 + ,10 + ,80 + ,8 + ,27 + ,110 + ,35 + ,1 + ,4 + ,27 + ,108 + ,35 + ,140 + ,4 + ,27 + ,90 + ,23 + ,1 + ,4 + ,27 + ,108 + ,23 + ,92 + ,4 + ,27 + ,74 + ,29 + ,1 + ,3 + ,27 + ,81 + ,29 + ,87 + ,3 + ,26 + ,75 + ,17 + ,1 + ,4 + ,26 + ,104 + ,17 + ,68 + ,4 + ,25 + ,107 + ,35 + ,1 + ,3 + ,25 + ,75 + ,35 + ,105 + ,3 + ,25 + ,90 + ,50 + ,1 + ,5 + ,25 + ,125 + ,50 + ,250 + ,5 + ,25 + ,96 + ,33 + ,1 + ,3 + ,25 + ,75 + ,33 + ,99 + ,3 + ,24 + ,115 + ,23 + ,1 + ,3 + ,24 + ,72 + ,23 + ,69 + ,3 + ,24 + ,91 + ,22 + ,1 + ,2 + ,24 + ,48 + ,22 + ,44 + ,2 + ,23 + ,77 + ,52 + ,1 + ,4 + ,23 + ,92 + ,52 + ,208 + ,4 + ,23 + ,108 + ,38 + ,1 + ,31 + ,23 + ,713 + ,38 + ,1178 + ,31 + ,23 + ,83 + ,32 + ,1 + ,2 + ,23 + ,46 + ,32 + ,64 + ,2 + ,23 + ,77 + ,28 + ,1 + ,5 + ,23 + ,115 + ,28 + ,140 + ,5 + ,23 + ,99 + ,43 + ,1 + ,5 + ,23 + ,115 + ,43 + ,215 + ,5 + ,22 + ,115 + ,32 + ,1 + ,2 + ,22 + ,44 + ,32 + ,64 + ,2 + ,22 + ,99 + ,35 + ,1 + ,2 + ,22 + ,44 + ,35 + ,70 + ,2 + ,22 + ,106 + ,25 + ,1 + ,3 + ,22 + ,66 + ,25 + ,75 + ,3 + ,22 + ,77 + ,14 + ,1 + ,8 + ,22 + ,176 + ,14 + ,112 + ,8 + ,20 + ,115 + ,17 + ,1 + ,6 + ,20 + ,120 + ,17 + ,102 + ,6 + ,19 + ,67 + ,18 + ,1 + ,3 + ,19 + ,57 + ,18 + ,54 + ,3 + ,19 + ,8 + ,12 + ,1 + ,2 + ,19 + ,38 + ,12 + ,24 + ,2 + ,17 + ,69 + ,27 + ,1 + ,5 + ,17 + ,85 + ,27 + ,135 + ,5 + ,17 + ,88 + ,28 + ,1 + ,3 + ,17 + ,51 + ,28 + ,84 + ,3 + ,16 + ,107 + ,12 + ,1 + ,5 + ,16 + ,80 + ,12 + ,60 + ,5 + ,16 + ,120 + ,21 + ,1 + ,5 + ,16 + ,80 + ,21 + ,105 + ,5 + ,5 + ,3 + ,9 + ,1 + ,4 + ,5 + ,20 + ,9 + ,36 + ,4 + ,4 + ,1 + ,11 + ,1 + ,2 + ,4 + ,8 + ,11 + ,22 + ,2 + ,3 + ,0 + ,3 + ,1 + ,4 + ,3 + ,12 + ,3 + ,12 + ,4 + ,156 + ,111 + ,111 + ,0 + ,4 + ,0 + ,624 + ,0 + ,444 + ,0 + ,109 + ,69 + ,137 + ,0 + ,8 + ,0 + ,872 + ,0 + ,1096 + ,0 + ,104 + ,116 + ,112 + ,0 + ,3 + ,0 + ,312 + ,0 + ,336 + ,0 + ,98 + ,103 + ,73 + ,0 + ,4 + ,0 + ,392 + ,0 + ,292 + ,0 + ,78 + ,139 + ,99 + ,0 + ,3 + ,0 + ,234 + ,0 + ,297 + ,0 + ,77 + ,135 + ,115 + ,0 + ,3 + ,0 + ,231 + ,0 + ,345 + ,0 + ,73 + ,113 + ,95 + ,0 + ,3 + ,0 + ,219 + ,0 + ,285 + ,0 + ,71 + ,99 + ,60 + ,0 + ,4 + ,0 + ,284 + ,0 + ,240 + ,0 + ,67 + ,76 + ,94 + ,0 + ,4 + ,0 + ,268 + ,0 + ,376 + ,0 + ,64 + ,110 + ,70 + ,0 + ,5 + ,0 + ,320 + ,0 + ,350 + ,0 + ,62 + ,121 + ,87 + ,0 + ,2 + ,0 + ,124 + ,0 + ,174 + ,0 + ,61 + ,95 + ,102 + ,0 + ,3 + ,0 + ,183 + ,0 + ,306 + ,0 + ,58 + ,66 + ,69 + ,0 + ,4 + ,0 + ,232 + ,0 + ,276 + ,0 + ,58 + ,111 + ,111 + ,0 + ,7 + ,0 + ,406 + ,0 + ,777 + ,0 + ,56 + ,77 + ,55 + ,0 + ,3 + ,0 + ,168 + ,0 + ,165 + ,0 + ,56 + ,101 + ,118 + ,0 + ,4 + ,0 + ,224 + ,0 + ,472 + ,0 + ,52 + ,108 + ,90 + ,0 + ,3 + ,0 + ,156 + ,0 + ,270 + ,0 + ,51 + ,135 + ,81 + ,0 + ,4 + ,0 + ,204 + ,0 + ,324 + ,0 + ,51 + ,70 + ,88 + ,0 + ,4 + ,0 + ,204 + ,0 + ,352 + ,0 + ,50 + ,124 + ,63 + ,0 + ,3 + ,0 + ,150 + ,0 + ,189 + ,0 + ,49 + ,92 + ,84 + ,0 + ,6 + ,0 + ,294 + ,0 + ,504 + ,0 + ,49 + ,104 + ,87 + ,0 + ,4 + ,0 + ,196 + ,0 + ,348 + ,0 + ,48 + ,113 + ,78 + ,0 + ,4 + ,0 + ,192 + ,0 + ,312 + ,0 + ,47 + ,95 + ,93 + ,0 + ,4 + ,0 + ,188 + ,0 + ,372 + ,0 + ,47 + ,89 + ,69 + ,0 + ,4 + ,0 + ,188 + ,0 + ,276 + ,0 + ,46 + ,83 + ,67 + ,0 + ,3 + ,0 + ,138 + ,0 + ,201 + ,0 + ,45 + ,96 + ,61 + ,0 + ,6 + ,0 + ,270 + ,0 + ,366 + ,0 + ,45 + ,95 + ,123 + ,0 + ,4 + ,0 + ,180 + ,0 + ,492 + ,0 + ,45 + ,110 + ,91 + ,0 + ,6 + ,0 + ,270 + ,0 + ,546 + ,0 + ,45 + ,106 + ,98 + ,0 + ,6 + ,0 + ,270 + ,0 + ,588 + ,0 + ,44 + ,78 + ,38 + ,0 + ,2 + ,0 + ,88 + ,0 + ,76 + ,0 + ,44 + ,115 + ,72 + ,0 + ,3 + ,0 + ,132 + ,0 + ,216 + ,0 + ,44 + ,74 + ,59 + ,0 + ,3 + ,0 + ,132 + ,0 + ,177 + ,0 + ,43 + ,93 + ,78 + ,0 + ,2 + ,0 + ,86 + ,0 + ,156 + ,0 + ,43 + ,88 + ,58 + ,0 + ,4 + ,0 + ,172 + ,0 + ,232 + ,0 + ,42 + ,104 + ,97 + ,0 + ,5 + ,0 + ,210 + ,0 + ,485 + ,0 + ,41 + ,86 + ,69 + ,0 + ,3 + ,0 + ,123 + ,0 + ,207 + ,0 + ,41 + ,104 + ,50 + ,0 + ,7 + ,0 + ,287 + ,0 + ,350 + ,0 + ,40 + ,99 + ,66 + ,0 + ,4 + ,0 + ,160 + ,0 + ,264 + ,0 + ,39 + ,101 + ,70 + ,0 + ,3 + ,0 + ,117 + ,0 + ,210 + ,0 + ,39 + ,53 + ,65 + ,0 + ,4 + ,0 + ,156 + ,0 + ,260 + ,0 + ,39 + ,96 + ,69 + ,0 + ,4 + ,0 + ,156 + ,0 + ,276 + ,0 + ,39 + ,58 + ,49 + ,0 + ,3 + ,0 + ,117 + ,0 + ,147 + ,0 + ,39 + ,117 + ,72 + ,0 + ,3 + ,0 + ,117 + ,0 + ,216 + ,0 + ,39 + ,82 + ,74 + ,0 + ,4 + ,0 + ,156 + ,0 + ,296 + ,0 + ,39 + ,57 + ,82 + ,0 + ,5 + ,0 + ,195 + ,0 + ,410 + ,0 + ,38 + ,71 + ,61 + ,0 + ,3 + ,0 + ,114 + ,0 + ,183 + ,0 + ,38 + ,105 + ,72 + ,0 + ,4 + ,0 + ,152 + ,0 + ,288 + ,0 + ,38 + ,60 + ,77 + ,0 + ,6 + ,0 + ,228 + ,0 + ,462 + ,0 + ,38 + ,77 + ,64 + ,0 + ,5 + ,0 + ,190 + ,0 + ,320 + ,0 + ,37 + ,73 + ,23 + ,0 + ,7 + ,0 + ,259 + ,0 + ,161 + ,0 + ,37 + ,78 + ,39 + ,0 + ,5 + ,0 + ,185 + ,0 + ,195 + ,0 + ,37 + ,81 + ,87 + ,0 + ,5 + ,0 + ,185 + ,0 + ,435 + ,0 + ,36 + ,101 + ,46 + ,0 + ,3 + ,0 + ,108 + ,0 + ,138 + ,0 + ,36 + ,118 + ,66 + ,0 + ,5 + ,0 + ,180 + ,0 + ,330 + ,0 + ,36 + ,59 + ,57 + ,0 + ,4 + ,0 + ,144 + ,0 + ,228 + ,0 + ,36 + ,101 + ,48 + ,0 + ,9 + ,0 + ,324 + ,0 + ,432 + ,0 + ,36 + ,22 + ,75 + ,0 + ,3 + ,0 + ,108 + ,0 + ,225 + ,0 + ,36 + ,77 + ,35 + ,0 + ,3 + ,0 + ,108 + ,0 + ,105 + ,0 + ,35 + ,100 + ,53 + ,0 + ,3 + ,0 + ,105 + ,0 + ,159 + ,0 + ,35 + ,39 + ,60 + ,0 + ,3 + ,0 + ,105 + ,0 + ,180 + ,0 + ,34 + ,42 + ,20 + ,0 + ,15 + ,0 + ,510 + ,0 + ,300 + ,0 + ,34 + ,80 + ,66 + ,0 + ,4 + ,0 + ,136 + ,0 + ,264 + ,0 + ,34 + ,48 + ,34 + ,0 + ,6 + ,0 + ,204 + ,0 + ,204 + ,0 + ,34 + ,131 + ,80 + ,0 + ,3 + ,0 + ,102 + ,0 + ,240 + ,0 + ,34 + ,46 + ,63 + ,0 + ,3 + ,0 + ,102 + ,0 + ,189 + ,0 + ,33 + ,89 + ,46 + ,0 + ,3 + ,0 + ,99 + ,0 + ,138 + ,0 + ,33 + ,51 + ,20 + ,0 + ,5 + ,0 + ,165 + ,0 + ,100 + ,0 + ,33 + ,108 + ,73 + ,0 + ,3 + ,0 + ,99 + ,0 + ,219 + ,0 + ,33 + ,86 + ,57 + ,0 + ,4 + ,0 + ,132 + ,0 + ,228 + ,0 + ,33 + ,105 + ,65 + ,0 + ,7 + ,0 + ,231 + ,0 + ,455 + ,0 + ,33 + ,85 + ,70 + ,0 + ,4 + ,0 + ,132 + ,0 + ,280 + ,0 + ,32 + ,103 + ,53 + ,0 + ,5 + ,0 + ,160 + ,0 + ,265 + ,0 + ,32 + ,83 + ,60 + ,0 + ,7 + ,0 + ,224 + ,0 + ,420 + ,0 + ,32 + ,77 + ,34 + ,0 + ,14 + ,0 + ,448 + ,0 + ,476 + ,0 + ,32 + ,26 + ,18 + ,0 + ,25 + ,0 + ,800 + ,0 + ,450 + ,0 + ,32 + ,73 + ,49 + ,0 + ,6 + ,0 + ,192 + ,0 + ,294 + ,0 + ,31 + ,42 + ,27 + ,0 + ,4 + ,0 + ,124 + ,0 + ,108 + ,0 + ,31 + ,71 + ,45 + ,0 + ,3 + ,0 + ,93 + ,0 + ,135 + ,0 + ,31 + ,105 + ,9 + ,0 + ,62 + ,0 + ,1922 + ,0 + ,558 + ,0 + ,30 + ,73 + ,23 + ,0 + ,5 + ,0 + ,150 + ,0 + ,115 + ,0 + ,30 + ,98 + ,61 + ,0 + ,10 + ,0 + ,300 + ,0 + ,610 + ,0 + ,29 + ,108 + ,67 + ,0 + ,4 + ,0 + ,116 + ,0 + ,268 + ,0 + ,29 + ,57 + ,72 + ,0 + ,5 + ,0 + ,145 + ,0 + ,360 + ,0 + ,29 + ,37 + ,58 + ,0 + ,5 + ,0 + ,145 + ,0 + ,290 + ,0 + ,28 + ,70 + ,55 + ,0 + ,4 + ,0 + ,112 + ,0 + ,220 + ,0 + ,28 + ,73 + ,33 + ,0 + ,10 + ,0 + ,280 + ,0 + ,330 + ,0 + ,28 + ,47 + ,40 + ,0 + ,5 + ,0 + ,140 + ,0 + ,200 + ,0 + ,28 + ,73 + ,57 + ,0 + ,3 + ,0 + ,84 + ,0 + ,171 + ,0 + ,28 + ,91 + ,61 + ,0 + ,3 + ,0 + ,84 + ,0 + ,183 + ,0 + ,28 + ,110 + ,87 + ,0 + ,17 + ,0 + ,476 + ,0 + ,1479 + ,0 + ,27 + ,78 + ,65 + ,0 + ,4 + ,0 + ,108 + ,0 + ,260 + ,0 + ,27 + ,92 + ,85 + ,0 + ,6 + ,0 + ,162 + ,0 + ,510 + ,0 + ,27 + ,52 + ,85 + ,0 + ,3 + ,0 + ,81 + ,0 + ,255 + ,0 + ,26 + ,88 + ,54 + ,0 + ,4 + ,0 + ,104 + ,0 + ,216 + ,0 + ,26 + ,100 + ,24 + ,0 + ,8 + ,0 + ,208 + ,0 + ,192 + ,0 + ,26 + ,33 + ,31 + ,0 + ,3 + ,0 + ,78 + ,0 + ,93 + ,0 + ,26 + ,42 + ,64 + ,0 + ,4 + ,0 + ,104 + ,0 + ,256 + ,0 + ,25 + ,81 + ,70 + ,0 + ,4 + ,0 + ,100 + ,0 + ,280 + ,0 + ,25 + ,67 + ,2 + ,0 + ,47 + ,0 + ,1175 + ,0 + ,94 + ,0 + ,24 + ,8 + ,27 + ,0 + ,8 + ,0 + ,192 + ,0 + ,216 + ,0 + ,24 + ,46 + ,29 + ,0 + ,3 + ,0 + ,72 + ,0 + ,87 + ,0 + ,24 + ,83 + ,68 + ,0 + ,5 + ,0 + ,120 + ,0 + ,340 + ,0 + ,24 + ,87 + ,42 + ,0 + ,3 + ,0 + ,72 + ,0 + ,126 + ,0 + ,24 + ,82 + ,78 + ,0 + ,4 + ,0 + ,96 + ,0 + ,312 + ,0 + ,24 + ,63 + ,13 + ,0 + ,30 + ,0 + ,720 + ,0 + ,390 + ,0 + ,24 + ,27 + ,52 + ,0 + ,4 + ,0 + ,96 + ,0 + ,208 + ,0 + ,23 + ,14 + ,25 + ,0 + ,12 + ,0 + ,276 + ,0 + ,300 + ,0 + ,23 + ,83 + ,38 + ,0 + ,8 + ,0 + ,184 + ,0 + ,304 + ,0 + ,23 + ,168 + ,40 + ,0 + ,3 + ,0 + ,69 + ,0 + ,120 + ,0 + ,23 + ,67 + ,42 + ,0 + ,8 + ,0 + ,184 + ,0 + ,336 + ,0 + ,23 + ,21 + ,40 + ,0 + ,4 + ,0 + ,92 + ,0 + ,160 + ,0 + ,23 + ,55 + ,74 + ,0 + ,3 + ,0 + ,69 + ,0 + ,222 + ,0 + ,23 + ,54 + ,73 + ,0 + ,4 + ,0 + ,92 + ,0 + ,292 + ,0 + ,22 + ,118 + ,56 + ,0 + ,4 + ,0 + ,88 + ,0 + ,224 + ,0 + ,22 + ,69 + ,3 + ,0 + ,21 + ,0 + ,462 + ,0 + ,63 + ,0 + ,21 + ,77 + ,9 + ,0 + ,12 + ,0 + ,252 + ,0 + ,108 + ,0 + ,21 + ,72 + ,68 + ,0 + ,3 + ,0 + ,63 + ,0 + ,204 + ,0 + ,21 + ,53 + ,28 + ,0 + ,3 + ,0 + ,63 + ,0 + ,84 + ,0 + ,21 + ,40 + ,36 + ,0 + ,4 + ,0 + ,84 + ,0 + ,144 + ,0 + ,20 + ,102 + ,38 + ,0 + ,6 + ,0 + ,120 + ,0 + ,228 + ,0 + ,20 + ,25 + ,55 + ,0 + ,17 + ,0 + ,340 + ,0 + ,935 + ,0 + ,20 + ,31 + ,36 + ,0 + ,3 + ,0 + ,60 + ,0 + ,108 + ,0 + ,20 + ,77 + ,17 + ,0 + ,18 + ,0 + ,360 + ,0 + ,306 + ,0 + ,20 + ,38 + ,54 + ,0 + ,5 + ,0 + ,100 + ,0 + ,270 + ,0 + ,19 + ,23 + ,57 + ,0 + ,5 + ,0 + ,95 + ,0 + ,285 + ,0 + ,19 + ,91 + ,30 + ,0 + ,16 + ,0 + ,304 + ,0 + ,480 + ,0 + ,19 + ,58 + ,40 + ,0 + ,10 + ,0 + ,190 + ,0 + ,400 + ,0 + ,18 + ,42 + ,37 + ,0 + ,5 + ,0 + ,90 + ,0 + ,185 + ,0 + ,18 + ,44 + ,46 + ,0 + ,4 + ,0 + ,72 + ,0 + ,184 + ,0 + ,18 + ,58 + ,32 + ,0 + ,3 + ,0 + ,54 + ,0 + ,96 + ,0 + ,18 + ,35 + ,34 + ,0 + ,5 + ,0 + ,90 + ,0 + ,170 + ,0 + ,18 + ,88 + ,22 + ,0 + ,4 + ,0 + ,72 + ,0 + ,88 + ,0 + ,17 + ,25 + ,59 + ,0 + ,5 + ,0 + ,85 + ,0 + ,295 + ,0 + ,17 + ,39 + ,32 + ,0 + ,10 + ,0 + ,170 + ,0 + ,320 + ,0 + ,16 + ,48 + ,18 + ,0 + ,12 + ,0 + ,192 + ,0 + ,216 + ,0 + ,16 + ,64 + ,28 + ,0 + ,4 + ,0 + ,64 + ,0 + ,112 + ,0 + ,15 + ,65 + ,34 + ,0 + ,9 + ,0 + ,135 + ,0 + ,306 + ,0 + ,15 + ,95 + ,29 + ,0 + ,12 + ,0 + ,180 + ,0 + ,348 + ,0 + ,15 + ,29 + ,24 + ,0 + ,10 + ,0 + ,150 + ,0 + ,240 + ,0 + ,15 + ,2 + ,24 + ,0 + ,9 + ,0 + ,135 + ,0 + ,216 + ,0 + ,14 + ,83 + ,23 + ,0 + ,17 + ,0 + ,238 + ,0 + ,391 + ,0 + ,13 + ,11 + ,43 + ,0 + ,6 + ,0 + ,78 + ,0 + ,258 + ,0 + ,13 + ,16 + ,28 + ,0 + ,3 + ,0 + ,39 + ,0 + ,84 + ,0 + ,12 + ,9 + ,19 + ,0 + ,4 + ,0 + ,48 + ,0 + ,76 + ,0 + ,11 + ,46 + ,16 + ,0 + ,19 + ,0 + ,209 + ,0 + ,304 + ,0 + ,11 + ,41 + ,40 + ,0 + ,3 + ,0 + ,33 + ,0 + ,120 + ,0 + ,10 + ,14 + ,14 + ,0 + ,9 + ,0 + ,90 + ,0 + ,126 + ,0 + ,10 + ,63 + ,19 + ,0 + ,7 + ,0 + ,70 + ,0 + ,133 + ,0 + ,10 + ,9 + ,22 + ,0 + ,4 + ,0 + ,40 + ,0 + ,88 + ,0 + ,10 + ,0 + ,8 + ,0 + ,3 + ,0 + ,30 + ,0 + ,24 + ,0 + ,9 + ,58 + ,31 + ,0 + ,46 + ,0 + ,414 + ,0 + ,1426 + ,0 + ,8 + ,18 + ,9 + ,0 + ,31 + ,0 + ,248 + ,0 + ,279 + ,0 + ,8 + ,42 + ,18 + ,0 + ,21 + ,0 + ,168 + ,0 + ,378 + ,0 + ,7 + ,26 + ,9 + ,0 + ,7 + ,0 + ,49 + ,0 + ,63 + ,0 + ,7 + ,38 + ,5 + ,0 + ,29 + ,0 + ,203 + ,0 + ,145 + ,0 + ,4 + ,1 + ,11 + ,0 + ,5 + ,0 + ,20 + ,0 + ,55 + ,0) + ,dim=c(10 + ,269) + ,dimnames=list(c('hours' + ,'lfm' + ,'blogs' + ,'uk' + ,'spr' + ,'hours_uk' + ,'hours_spr' + ,'blogs_uk' + ,'blogs_spr' + ,'uk_spr') + ,1:269)) > y <- array(NA,dim=c(10,269),dimnames=list(c('hours','lfm','blogs','uk','spr','hours_uk','hours_spr','blogs_uk','blogs_spr','uk_spr'),1:269)) > for (i in 1:dim(x)[1]) + { + for (j in 1:dim(x)[2]) + { + y[i,j] <- as.numeric(x[i,j]) + } + } > par3 = 'No Linear Trend' > par2 = 'Do not include Seasonal Dummies' > par1 = '2' > library(lattice) > library(lmtest) Loading required package: zoo Attaching package: 'zoo' The following object(s) are masked from 'package:base': as.Date, as.Date.numeric > n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test > par1 <- as.numeric(par1) > x <- t(y) > k <- length(x[1,]) > n <- length(x[,1]) > x1 <- cbind(x[,par1], x[,1:k!=par1]) > mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) > colnames(x1) <- mycolnames #colnames(x)[par1] > x <- x1 > if (par3 == 'First Differences'){ + x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) + for (i in 1:n-1) { + for (j in 1:k) { + x2[i,j] <- x[i+1,j] - x[i,j] + } + } + x <- x2 + } > if (par2 == 'Include Monthly Dummies'){ + x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) + for (i in 1:11){ + x2[seq(i,n,12),i] <- 1 + } + x <- cbind(x, x2) + } > if (par2 == 'Include Quarterly Dummies'){ + x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) + for (i in 1:3){ + x2[seq(i,n,4),i] <- 1 + } + x <- cbind(x, x2) + } > k <- length(x[1,]) > if (par3 == 'Linear Trend'){ + x <- cbind(x, c(1:n)) + colnames(x)[k+1] <- 't' + } > x lfm hours blogs uk spr hours_uk hours_spr blogs_uk blogs_spr uk_spr 1 122 102 88 1 9 102 918 88 792 9 2 114 99 106 1 3 99 297 106 318 3 3 140 97 70 1 2 97 194 70 140 2 4 143 82 70 1 21 82 1722 70 1470 21 5 122 77 56 1 10 77 770 56 560 10 6 127 65 50 1 2 65 130 50 100 2 7 113 64 48 1 4 64 256 48 192 4 8 118 62 71 1 4 62 248 71 284 4 9 161 62 61 1 4 62 248 61 244 4 10 134 62 66 1 5 62 310 66 330 5 11 96 61 80 1 2 61 122 80 160 2 12 104 59 37 1 3 59 177 37 111 3 13 135 57 53 1 3 57 171 53 159 3 14 110 56 39 1 6 56 336 39 234 6 15 128 54 40 1 3 54 162 40 120 3 16 142 54 59 1 4 54 216 59 236 4 17 117 53 42 1 3 53 159 42 126 3 18 94 52 33 1 13 52 676 33 429 13 19 135 51 36 1 3 51 153 36 108 3 20 121 51 57 1 4 51 204 57 228 4 21 103 51 38 1 8 51 408 38 304 8 22 118 50 98 1 8 50 400 98 784 8 23 127 50 43 1 3 50 150 43 129 3 24 116 50 73 1 4 50 200 73 292 4 25 129 49 52 1 2 49 98 52 104 2 26 115 49 53 1 5 49 245 53 265 5 27 135 49 51 1 4 49 196 51 204 4 28 133 48 32 1 3 48 144 32 96 3 29 113 48 43 1 3 48 144 43 129 3 30 111 47 53 1 2 47 94 53 106 2 31 92 47 50 1 3 47 141 50 150 3 32 118 46 50 1 3 46 138 50 150 3 33 134 46 56 1 3 46 138 56 168 3 34 106 45 53 1 5 45 225 53 265 5 35 137 45 47 1 3 45 135 47 141 3 36 100 45 42 1 4 45 180 42 168 4 37 102 44 29 1 3 44 132 29 87 3 38 134 43 54 1 4 43 172 54 216 4 39 130 42 40 1 8 42 336 40 320 8 40 144 42 41 1 3 42 126 41 123 3 41 120 42 37 1 4 42 168 37 148 4 42 91 42 25 1 2 42 84 25 50 2 43 100 42 27 1 5 42 210 27 135 5 44 134 42 61 1 4 42 168 61 244 4 45 161 41 54 1 7 41 287 54 378 7 46 128 41 35 1 3 41 123 35 105 3 47 124 41 55 1 4 41 164 55 220 4 48 115 41 47 1 6 41 246 47 282 6 49 123 41 49 1 7 41 287 49 343 7 50 117 41 38 1 20 41 820 38 760 20 51 111 41 52 1 49 41 2009 52 2548 49 52 146 40 35 1 3 40 120 35 105 3 53 101 40 52 1 3 40 120 52 156 3 54 131 40 54 1 6 40 240 54 324 6 55 122 40 40 1 6 40 240 40 240 6 56 78 40 52 1 4 40 160 52 208 4 57 120 39 34 1 5 39 195 34 170 5 58 115 39 51 1 4 39 156 51 204 4 59 142 38 43 1 4 38 152 43 172 4 60 94 38 40 1 31 38 1178 40 1240 31 61 114 36 38 1 3 36 108 38 114 3 62 108 36 33 1 3 36 108 33 99 3 63 119 35 27 1 4 35 140 27 108 4 64 117 35 34 1 6 35 210 34 204 6 65 86 35 44 1 5 35 175 44 220 5 66 138 35 46 1 3 35 105 46 138 3 67 119 34 50 1 3 34 102 50 150 3 68 117 34 31 1 2 34 68 31 62 2 69 117 34 33 1 3 34 102 33 99 3 70 76 33 37 1 3 33 99 37 111 3 71 119 33 48 1 16 33 528 48 768 16 72 119 33 33 1 3 33 99 33 99 3 73 124 32 40 1 3 32 96 40 120 3 74 116 32 21 1 3 32 96 21 63 3 75 118 32 33 1 2 32 64 33 66 2 76 102 31 41 1 5 31 155 41 205 5 77 116 31 35 1 3 31 93 35 105 3 78 103 30 60 1 4 30 120 60 240 4 79 117 30 30 1 5 30 150 30 150 5 80 108 30 45 1 2 30 60 45 90 2 81 122 30 26 1 3 30 90 26 78 3 82 90 29 41 1 3 29 87 41 123 3 83 133 28 48 1 14 28 392 48 672 14 84 116 28 10 1 8 28 224 10 80 8 85 110 27 35 1 4 27 108 35 140 4 86 90 27 23 1 4 27 108 23 92 4 87 74 27 29 1 3 27 81 29 87 3 88 75 26 17 1 4 26 104 17 68 4 89 107 25 35 1 3 25 75 35 105 3 90 90 25 50 1 5 25 125 50 250 5 91 96 25 33 1 3 25 75 33 99 3 92 115 24 23 1 3 24 72 23 69 3 93 91 24 22 1 2 24 48 22 44 2 94 77 23 52 1 4 23 92 52 208 4 95 108 23 38 1 31 23 713 38 1178 31 96 83 23 32 1 2 23 46 32 64 2 97 77 23 28 1 5 23 115 28 140 5 98 99 23 43 1 5 23 115 43 215 5 99 115 22 32 1 2 22 44 32 64 2 100 99 22 35 1 2 22 44 35 70 2 101 106 22 25 1 3 22 66 25 75 3 102 77 22 14 1 8 22 176 14 112 8 103 115 20 17 1 6 20 120 17 102 6 104 67 19 18 1 3 19 57 18 54 3 105 8 19 12 1 2 19 38 12 24 2 106 69 17 27 1 5 17 85 27 135 5 107 88 17 28 1 3 17 51 28 84 3 108 107 16 12 1 5 16 80 12 60 5 109 120 16 21 1 5 16 80 21 105 5 110 3 5 9 1 4 5 20 9 36 4 111 1 4 11 1 2 4 8 11 22 2 112 0 3 3 1 4 3 12 3 12 4 113 111 156 111 0 4 0 624 0 444 0 114 69 109 137 0 8 0 872 0 1096 0 115 116 104 112 0 3 0 312 0 336 0 116 103 98 73 0 4 0 392 0 292 0 117 139 78 99 0 3 0 234 0 297 0 118 135 77 115 0 3 0 231 0 345 0 119 113 73 95 0 3 0 219 0 285 0 120 99 71 60 0 4 0 284 0 240 0 121 76 67 94 0 4 0 268 0 376 0 122 110 64 70 0 5 0 320 0 350 0 123 121 62 87 0 2 0 124 0 174 0 124 95 61 102 0 3 0 183 0 306 0 125 66 58 69 0 4 0 232 0 276 0 126 111 58 111 0 7 0 406 0 777 0 127 77 56 55 0 3 0 168 0 165 0 128 101 56 118 0 4 0 224 0 472 0 129 108 52 90 0 3 0 156 0 270 0 130 135 51 81 0 4 0 204 0 324 0 131 70 51 88 0 4 0 204 0 352 0 132 124 50 63 0 3 0 150 0 189 0 133 92 49 84 0 6 0 294 0 504 0 134 104 49 87 0 4 0 196 0 348 0 135 113 48 78 0 4 0 192 0 312 0 136 95 47 93 0 4 0 188 0 372 0 137 89 47 69 0 4 0 188 0 276 0 138 83 46 67 0 3 0 138 0 201 0 139 96 45 61 0 6 0 270 0 366 0 140 95 45 123 0 4 0 180 0 492 0 141 110 45 91 0 6 0 270 0 546 0 142 106 45 98 0 6 0 270 0 588 0 143 78 44 38 0 2 0 88 0 76 0 144 115 44 72 0 3 0 132 0 216 0 145 74 44 59 0 3 0 132 0 177 0 146 93 43 78 0 2 0 86 0 156 0 147 88 43 58 0 4 0 172 0 232 0 148 104 42 97 0 5 0 210 0 485 0 149 86 41 69 0 3 0 123 0 207 0 150 104 41 50 0 7 0 287 0 350 0 151 99 40 66 0 4 0 160 0 264 0 152 101 39 70 0 3 0 117 0 210 0 153 53 39 65 0 4 0 156 0 260 0 154 96 39 69 0 4 0 156 0 276 0 155 58 39 49 0 3 0 117 0 147 0 156 117 39 72 0 3 0 117 0 216 0 157 82 39 74 0 4 0 156 0 296 0 158 57 39 82 0 5 0 195 0 410 0 159 71 38 61 0 3 0 114 0 183 0 160 105 38 72 0 4 0 152 0 288 0 161 60 38 77 0 6 0 228 0 462 0 162 77 38 64 0 5 0 190 0 320 0 163 73 37 23 0 7 0 259 0 161 0 164 78 37 39 0 5 0 185 0 195 0 165 81 37 87 0 5 0 185 0 435 0 166 101 36 46 0 3 0 108 0 138 0 167 118 36 66 0 5 0 180 0 330 0 168 59 36 57 0 4 0 144 0 228 0 169 101 36 48 0 9 0 324 0 432 0 170 22 36 75 0 3 0 108 0 225 0 171 77 36 35 0 3 0 108 0 105 0 172 100 35 53 0 3 0 105 0 159 0 173 39 35 60 0 3 0 105 0 180 0 174 42 34 20 0 15 0 510 0 300 0 175 80 34 66 0 4 0 136 0 264 0 176 48 34 34 0 6 0 204 0 204 0 177 131 34 80 0 3 0 102 0 240 0 178 46 34 63 0 3 0 102 0 189 0 179 89 33 46 0 3 0 99 0 138 0 180 51 33 20 0 5 0 165 0 100 0 181 108 33 73 0 3 0 99 0 219 0 182 86 33 57 0 4 0 132 0 228 0 183 105 33 65 0 7 0 231 0 455 0 184 85 33 70 0 4 0 132 0 280 0 185 103 32 53 0 5 0 160 0 265 0 186 83 32 60 0 7 0 224 0 420 0 187 77 32 34 0 14 0 448 0 476 0 188 26 32 18 0 25 0 800 0 450 0 189 73 32 49 0 6 0 192 0 294 0 190 42 31 27 0 4 0 124 0 108 0 191 71 31 45 0 3 0 93 0 135 0 192 105 31 9 0 62 0 1922 0 558 0 193 73 30 23 0 5 0 150 0 115 0 194 98 30 61 0 10 0 300 0 610 0 195 108 29 67 0 4 0 116 0 268 0 196 57 29 72 0 5 0 145 0 360 0 197 37 29 58 0 5 0 145 0 290 0 198 70 28 55 0 4 0 112 0 220 0 199 73 28 33 0 10 0 280 0 330 0 200 47 28 40 0 5 0 140 0 200 0 201 73 28 57 0 3 0 84 0 171 0 202 91 28 61 0 3 0 84 0 183 0 203 110 28 87 0 17 0 476 0 1479 0 204 78 27 65 0 4 0 108 0 260 0 205 92 27 85 0 6 0 162 0 510 0 206 52 27 85 0 3 0 81 0 255 0 207 88 26 54 0 4 0 104 0 216 0 208 100 26 24 0 8 0 208 0 192 0 209 33 26 31 0 3 0 78 0 93 0 210 42 26 64 0 4 0 104 0 256 0 211 81 25 70 0 4 0 100 0 280 0 212 67 25 2 0 47 0 1175 0 94 0 213 8 24 27 0 8 0 192 0 216 0 214 46 24 29 0 3 0 72 0 87 0 215 83 24 68 0 5 0 120 0 340 0 216 87 24 42 0 3 0 72 0 126 0 217 82 24 78 0 4 0 96 0 312 0 218 63 24 13 0 30 0 720 0 390 0 219 27 24 52 0 4 0 96 0 208 0 220 14 23 25 0 12 0 276 0 300 0 221 83 23 38 0 8 0 184 0 304 0 222 168 23 40 0 3 0 69 0 120 0 223 67 23 42 0 8 0 184 0 336 0 224 21 23 40 0 4 0 92 0 160 0 225 55 23 74 0 3 0 69 0 222 0 226 54 23 73 0 4 0 92 0 292 0 227 118 22 56 0 4 0 88 0 224 0 228 69 22 3 0 21 0 462 0 63 0 229 77 21 9 0 12 0 252 0 108 0 230 72 21 68 0 3 0 63 0 204 0 231 53 21 28 0 3 0 63 0 84 0 232 40 21 36 0 4 0 84 0 144 0 233 102 20 38 0 6 0 120 0 228 0 234 25 20 55 0 17 0 340 0 935 0 235 31 20 36 0 3 0 60 0 108 0 236 77 20 17 0 18 0 360 0 306 0 237 38 20 54 0 5 0 100 0 270 0 238 23 19 57 0 5 0 95 0 285 0 239 91 19 30 0 16 0 304 0 480 0 240 58 19 40 0 10 0 190 0 400 0 241 42 18 37 0 5 0 90 0 185 0 242 44 18 46 0 4 0 72 0 184 0 243 58 18 32 0 3 0 54 0 96 0 244 35 18 34 0 5 0 90 0 170 0 245 88 18 22 0 4 0 72 0 88 0 246 25 17 59 0 5 0 85 0 295 0 247 39 17 32 0 10 0 170 0 320 0 248 48 16 18 0 12 0 192 0 216 0 249 64 16 28 0 4 0 64 0 112 0 250 65 15 34 0 9 0 135 0 306 0 251 95 15 29 0 12 0 180 0 348 0 252 29 15 24 0 10 0 150 0 240 0 253 2 15 24 0 9 0 135 0 216 0 254 83 14 23 0 17 0 238 0 391 0 255 11 13 43 0 6 0 78 0 258 0 256 16 13 28 0 3 0 39 0 84 0 257 9 12 19 0 4 0 48 0 76 0 258 46 11 16 0 19 0 209 0 304 0 259 41 11 40 0 3 0 33 0 120 0 260 14 10 14 0 9 0 90 0 126 0 261 63 10 19 0 7 0 70 0 133 0 262 9 10 22 0 4 0 40 0 88 0 263 0 10 8 0 3 0 30 0 24 0 264 58 9 31 0 46 0 414 0 1426 0 265 18 8 9 0 31 0 248 0 279 0 266 42 8 18 0 21 0 168 0 378 0 267 26 7 9 0 7 0 49 0 63 0 268 38 7 5 0 29 0 203 0 145 0 269 1 4 11 0 5 0 20 0 55 0 > k <- length(x[1,]) > df <- as.data.frame(x) > (mylm <- lm(df)) Call: lm(formula = df) Coefficients: (Intercept) hours blogs uk spr hours_uk 25.268897 0.464773 0.587249 39.742992 0.991210 0.232474 hours_spr blogs_uk blogs_spr uk_spr -0.008381 -0.201812 -0.019363 0.322641 > (mysum <- summary(mylm)) Call: lm(formula = df) Residuals: Min 1Q Median 3Q Max -76.729 -15.285 2.652 17.187 108.480 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 25.268897 6.462281 3.910 0.000118 *** hours 0.464773 0.175330 2.651 0.008524 ** blogs 0.587249 0.142811 4.112 5.27e-05 *** uk 39.742992 9.161311 4.338 2.06e-05 *** spr 0.991210 0.517464 1.916 0.056528 . hours_uk 0.232474 0.260179 0.894 0.372410 hours_spr -0.008381 0.018055 -0.464 0.642909 blogs_uk -0.201812 0.241768 -0.835 0.404637 blogs_spr -0.019363 0.014270 -1.357 0.175993 uk_spr 0.322641 0.678778 0.475 0.634955 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 25.52 on 259 degrees of freedom Multiple R-squared: 0.5103, Adjusted R-squared: 0.4933 F-statistic: 29.99 on 9 and 259 DF, p-value: < 2.2e-16 > if (n > n25) { + kp3 <- k + 3 + nmkm3 <- n - k - 3 + gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) + numgqtests <- 0 + numsignificant1 <- 0 + numsignificant5 <- 0 + numsignificant10 <- 0 + for (mypoint in kp3:nmkm3) { + j <- 0 + numgqtests <- numgqtests + 1 + for (myalt in c('greater', 'two.sided', 'less')) { + j <- j + 1 + gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value + } + if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 + if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 + } + gqarr + } [,1] [,2] [,3] [1,] 6.891228e-01 6.217544e-01 0.3108772 [2,] 5.935690e-01 8.128620e-01 0.4064310 [3,] 4.575506e-01 9.151011e-01 0.5424494 [4,] 3.659428e-01 7.318857e-01 0.6340572 [5,] 2.630797e-01 5.261595e-01 0.7369203 [6,] 1.989517e-01 3.979033e-01 0.8010483 [7,] 1.434824e-01 2.869648e-01 0.8565176 [8,] 9.888002e-02 1.977600e-01 0.9011200 [9,] 8.979177e-02 1.795835e-01 0.9102082 [10,] 1.321921e-01 2.643843e-01 0.8678079 [11,] 8.960552e-02 1.792110e-01 0.9103945 [12,] 6.011072e-02 1.202214e-01 0.9398893 [13,] 3.928805e-02 7.857609e-02 0.9607120 [14,] 2.542804e-02 5.085607e-02 0.9745720 [15,] 1.899206e-02 3.798412e-02 0.9810079 [16,] 1.162388e-02 2.324776e-02 0.9883761 [17,] 8.638321e-03 1.727664e-02 0.9913617 [18,] 6.281875e-03 1.256375e-02 0.9937181 [19,] 1.141276e-02 2.282551e-02 0.9885872 [20,] 7.101729e-03 1.420346e-02 0.9928983 [21,] 5.891860e-03 1.178372e-02 0.9941081 [22,] 4.355365e-03 8.710729e-03 0.9956446 [23,] 3.575026e-03 7.150051e-03 0.9964250 [24,] 3.798634e-03 7.597267e-03 0.9962014 [25,] 4.246326e-03 8.492652e-03 0.9957537 [26,] 3.608661e-03 7.217322e-03 0.9963913 [27,] 3.259481e-03 6.518962e-03 0.9967405 [28,] 3.533258e-03 7.066517e-03 0.9964667 [29,] 2.214092e-03 4.428185e-03 0.9977859 [30,] 5.042818e-03 1.008564e-02 0.9949572 [31,] 4.370439e-03 8.740878e-03 0.9956296 [32,] 3.422535e-03 6.845071e-03 0.9965775 [33,] 9.603670e-03 1.920734e-02 0.9903963 [34,] 6.858155e-03 1.371631e-02 0.9931418 [35,] 4.646499e-03 9.292998e-03 0.9953535 [36,] 3.235401e-03 6.470801e-03 0.9967646 [37,] 2.135029e-03 4.270058e-03 0.9978650 [38,] 1.424277e-03 2.848554e-03 0.9985757 [39,] 1.053149e-03 2.106297e-03 0.9989469 [40,] 1.236513e-03 2.473026e-03 0.9987635 [41,] 1.312659e-03 2.625319e-03 0.9986873 [42,] 9.130519e-04 1.826104e-03 0.9990869 [43,] 5.915294e-04 1.183059e-03 0.9994085 [44,] 2.557058e-03 5.114116e-03 0.9974429 [45,] 1.740794e-03 3.481589e-03 0.9982592 [46,] 1.229072e-03 2.458143e-03 0.9987709 [47,] 1.225528e-03 2.451055e-03 0.9987745 [48,] 1.030997e-03 2.061994e-03 0.9989690 [49,] 7.169204e-04 1.433841e-03 0.9992831 [50,] 5.525989e-04 1.105198e-03 0.9994474 [51,] 3.600838e-04 7.201676e-04 0.9996399 [52,] 2.338304e-04 4.676609e-04 0.9997662 [53,] 4.634538e-04 9.269076e-04 0.9995365 [54,] 4.145552e-04 8.291105e-04 0.9995854 [55,] 2.718029e-04 5.436058e-04 0.9997282 [56,] 1.783045e-04 3.566090e-04 0.9998217 [57,] 1.151291e-04 2.302583e-04 0.9998849 [58,] 4.397641e-04 8.795281e-04 0.9995602 [59,] 3.048282e-04 6.096565e-04 0.9996952 [60,] 2.010594e-04 4.021189e-04 0.9997989 [61,] 1.355454e-04 2.710908e-04 0.9998645 [62,] 8.769769e-05 1.753954e-04 0.9999123 [63,] 5.606347e-05 1.121269e-04 0.9999439 [64,] 4.466515e-05 8.933031e-05 0.9999553 [65,] 2.820766e-05 5.641532e-05 0.9999718 [66,] 2.202759e-05 4.405518e-05 0.9999780 [67,] 1.379963e-05 2.759927e-05 0.9999862 [68,] 9.220365e-06 1.844073e-05 0.9999908 [69,] 5.874876e-06 1.174975e-05 0.9999941 [70,] 7.486360e-06 1.497272e-05 0.9999925 [71,] 6.395632e-06 1.279126e-05 0.9999936 [72,] 4.384796e-06 8.769593e-06 0.9999956 [73,] 2.727361e-06 5.454723e-06 0.9999973 [74,] 3.036430e-06 6.072860e-06 0.9999970 [75,] 9.765297e-06 1.953059e-05 0.9999902 [76,] 2.123141e-05 4.246282e-05 0.9999788 [77,] 1.377054e-05 2.754108e-05 0.9999862 [78,] 1.345579e-05 2.691159e-05 0.9999865 [79,] 1.022123e-05 2.044246e-05 0.9999898 [80,] 6.892101e-06 1.378420e-05 0.9999931 [81,] 5.984406e-06 1.196881e-05 0.9999940 [82,] 9.867615e-06 1.973523e-05 0.9999901 [83,] 7.839152e-06 1.567830e-05 0.9999922 [84,] 8.148945e-06 1.629789e-05 0.9999919 [85,] 1.161475e-05 2.322950e-05 0.9999884 [86,] 1.104398e-05 2.208795e-05 0.9999890 [87,] 7.929689e-06 1.585938e-05 0.9999921 [88,] 5.266650e-06 1.053330e-05 0.9999947 [89,] 3.516143e-06 7.032285e-06 0.9999965 [90,] 5.657056e-06 1.131411e-05 0.9999943 [91,] 4.187167e-06 8.374333e-06 0.9999958 [92,] 7.567866e-06 1.513573e-05 0.9999924 [93,] 1.281566e-03 2.563133e-03 0.9987184 [94,] 1.495546e-03 2.991092e-03 0.9985045 [95,] 1.192443e-03 2.384886e-03 0.9988076 [96,] 9.599777e-04 1.919955e-03 0.9990400 [97,] 8.905118e-04 1.781024e-03 0.9991095 [98,] 8.761655e-03 1.752331e-02 0.9912383 [99,] 3.545090e-02 7.090181e-02 0.9645491 [100,] 8.637699e-02 1.727540e-01 0.9136230 [101,] 9.100793e-02 1.820159e-01 0.9089921 [102,] 1.639508e-01 3.279016e-01 0.8360492 [103,] 1.584475e-01 3.168951e-01 0.8415525 [104,] 1.545273e-01 3.090547e-01 0.8454727 [105,] 1.406871e-01 2.813742e-01 0.8593129 [106,] 1.213846e-01 2.427691e-01 0.8786154 [107,] 1.083493e-01 2.166985e-01 0.8916507 [108,] 9.436757e-02 1.887351e-01 0.9056324 [109,] 1.181147e-01 2.362295e-01 0.8818853 [110,] 1.084605e-01 2.169210e-01 0.8915395 [111,] 9.338966e-02 1.867793e-01 0.9066103 [112,] 9.053493e-02 1.810699e-01 0.9094651 [113,] 1.090635e-01 2.181269e-01 0.8909365 [114,] 1.084540e-01 2.169080e-01 0.8915460 [115,] 1.060548e-01 2.121096e-01 0.8939452 [116,] 9.789478e-02 1.957896e-01 0.9021052 [117,] 8.329591e-02 1.665918e-01 0.9167041 [118,] 9.466092e-02 1.893218e-01 0.9053391 [119,] 1.113804e-01 2.227608e-01 0.8886196 [120,] 1.105765e-01 2.211531e-01 0.8894235 [121,] 9.742357e-02 1.948471e-01 0.9025764 [122,] 8.294584e-02 1.658917e-01 0.9170542 [123,] 7.282046e-02 1.456409e-01 0.9271795 [124,] 6.295778e-02 1.259156e-01 0.9370422 [125,] 5.391573e-02 1.078315e-01 0.9460843 [126,] 4.868562e-02 9.737125e-02 0.9513144 [127,] 4.127967e-02 8.255934e-02 0.9587203 [128,] 3.700454e-02 7.400907e-02 0.9629955 [129,] 3.203199e-02 6.406399e-02 0.9679680 [130,] 2.663334e-02 5.326667e-02 0.9733667 [131,] 2.317293e-02 4.634587e-02 0.9768271 [132,] 2.063143e-02 4.126286e-02 0.9793686 [133,] 1.927453e-02 3.854905e-02 0.9807255 [134,] 1.578325e-02 3.156650e-02 0.9842168 [135,] 1.261488e-02 2.522975e-02 0.9873851 [136,] 9.988994e-03 1.997799e-02 0.9900110 [137,] 8.083468e-03 1.616694e-02 0.9919165 [138,] 7.094628e-03 1.418926e-02 0.9929054 [139,] 5.624326e-03 1.124865e-02 0.9943757 [140,] 4.496383e-03 8.992766e-03 0.9955036 [141,] 6.392075e-03 1.278415e-02 0.9936079 [142,] 4.989573e-03 9.979146e-03 0.9950104 [143,] 5.317080e-03 1.063416e-02 0.9946829 [144,] 5.283301e-03 1.056660e-02 0.9947167 [145,] 4.275743e-03 8.551487e-03 0.9957243 [146,] 5.995361e-03 1.199072e-02 0.9940046 [147,] 5.243603e-03 1.048721e-02 0.9947564 [148,] 4.359500e-03 8.719000e-03 0.9956405 [149,] 5.124198e-03 1.024840e-02 0.9948758 [150,] 4.140343e-03 8.280686e-03 0.9958597 [151,] 3.156048e-03 6.312096e-03 0.9968440 [152,] 2.385676e-03 4.771353e-03 0.9976143 [153,] 1.958481e-03 3.916962e-03 0.9980415 [154,] 1.741177e-03 3.482353e-03 0.9982588 [155,] 2.024004e-03 4.048008e-03 0.9979760 [156,] 2.054200e-03 4.108400e-03 0.9979458 [157,] 1.859081e-03 3.718161e-03 0.9981409 [158,] 1.058410e-02 2.116820e-02 0.9894159 [159,] 8.276042e-03 1.655208e-02 0.9917240 [160,] 7.250535e-03 1.450107e-02 0.9927495 [161,] 1.286611e-02 2.573222e-02 0.9871339 [162,] 1.397620e-02 2.795241e-02 0.9860238 [163,] 1.118933e-02 2.237866e-02 0.9888107 [164,] 1.174846e-02 2.349691e-02 0.9882515 [165,] 1.622767e-02 3.245535e-02 0.9837723 [166,] 2.305486e-02 4.610972e-02 0.9769451 [167,] 1.891547e-02 3.783094e-02 0.9810845 [168,] 1.736394e-02 3.472789e-02 0.9826361 [169,] 1.569846e-02 3.139692e-02 0.9843015 [170,] 1.235963e-02 2.471926e-02 0.9876404 [171,] 1.128553e-02 2.257107e-02 0.9887145 [172,] 8.763922e-03 1.752784e-02 0.9912361 [173,] 8.330101e-03 1.666020e-02 0.9916699 [174,] 6.390839e-03 1.278168e-02 0.9936092 [175,] 4.971377e-03 9.942754e-03 0.9950286 [176,] 8.876818e-03 1.775364e-02 0.9911232 [177,] 6.963616e-03 1.392723e-02 0.9930364 [178,] 8.180598e-03 1.636120e-02 0.9918194 [179,] 6.420981e-03 1.284196e-02 0.9935790 [180,] 6.834063e-03 1.366813e-02 0.9931659 [181,] 5.241069e-03 1.048214e-02 0.9947589 [182,] 4.352600e-03 8.705201e-03 0.9956474 [183,] 4.536845e-03 9.073690e-03 0.9954632 [184,] 4.476911e-03 8.953821e-03 0.9955231 [185,] 7.247204e-03 1.449441e-02 0.9927528 [186,] 5.594812e-03 1.118962e-02 0.9944052 [187,] 4.208259e-03 8.416517e-03 0.9957917 [188,] 4.484705e-03 8.969410e-03 0.9955153 [189,] 3.368415e-03 6.736830e-03 0.9966316 [190,] 2.624648e-03 5.249296e-03 0.9973754 [191,] 2.407499e-03 4.814997e-03 0.9975925 [192,] 1.749040e-03 3.498080e-03 0.9982510 [193,] 1.383144e-03 2.766288e-03 0.9986169 [194,] 1.512280e-03 3.024560e-03 0.9984877 [195,] 1.180274e-03 2.360548e-03 0.9988197 [196,] 1.337671e-03 2.675343e-03 0.9986623 [197,] 1.841577e-03 3.683155e-03 0.9981584 [198,] 2.348792e-03 4.697585e-03 0.9976512 [199,] 1.710224e-03 3.420448e-03 0.9982898 [200,] 1.284882e-03 2.569764e-03 0.9987151 [201,] 5.409117e-03 1.081823e-02 0.9945909 [202,] 5.594344e-03 1.118869e-02 0.9944057 [203,] 4.343288e-03 8.686577e-03 0.9956567 [204,] 3.401792e-03 6.803585e-03 0.9965982 [205,] 2.711954e-03 5.423909e-03 0.9972880 [206,] 1.952465e-03 3.904929e-03 0.9980475 [207,] 3.775280e-03 7.550559e-03 0.9962247 [208,] 1.378971e-02 2.757941e-02 0.9862103 [209,] 1.055674e-02 2.111349e-02 0.9894433 [210,] 2.421756e-01 4.843511e-01 0.7578244 [211,] 2.050380e-01 4.100760e-01 0.7949620 [212,] 2.978944e-01 5.957887e-01 0.7021056 [213,] 2.643995e-01 5.287990e-01 0.7356005 [214,] 2.349474e-01 4.698948e-01 0.7650526 [215,] 4.213334e-01 8.426667e-01 0.5786666 [216,] 4.029991e-01 8.059981e-01 0.5970009 [217,] 3.546302e-01 7.092604e-01 0.6453698 [218,] 3.704272e-01 7.408544e-01 0.6295728 [219,] 3.238256e-01 6.476511e-01 0.6761744 [220,] 3.065134e-01 6.130267e-01 0.6934866 [221,] 4.301563e-01 8.603126e-01 0.5698437 [222,] 5.756976e-01 8.486047e-01 0.4243024 [223,] 5.497574e-01 9.004852e-01 0.4502426 [224,] 5.135398e-01 9.729205e-01 0.4864602 [225,] 4.664314e-01 9.328628e-01 0.5335686 [226,] 4.627900e-01 9.255801e-01 0.5372100 [227,] 4.107239e-01 8.214478e-01 0.5892761 [228,] 3.506401e-01 7.012802e-01 0.6493599 [229,] 2.973809e-01 5.947619e-01 0.7026191 [230,] 2.435738e-01 4.871477e-01 0.7564262 [231,] 2.021513e-01 4.043026e-01 0.7978487 [232,] 1.703537e-01 3.407075e-01 0.8296463 [233,] 2.897704e-01 5.795408e-01 0.7102296 [234,] 2.714214e-01 5.428428e-01 0.7285786 [235,] 2.395824e-01 4.791649e-01 0.7604176 [236,] 1.889119e-01 3.778239e-01 0.8110881 [237,] 2.809499e-01 5.618998e-01 0.7190501 [238,] 2.501535e-01 5.003071e-01 0.7498465 [239,] 4.048994e-01 8.097987e-01 0.5951006 [240,] 3.133179e-01 6.266358e-01 0.6866821 [241,] 3.795169e-01 7.590338e-01 0.6204831 [242,] 3.245903e-01 6.491807e-01 0.6754097 [243,] 3.239359e-01 6.478719e-01 0.6760641 [244,] 2.136127e-01 4.272255e-01 0.7863873 > postscript(file="/var/wessaorg/rcomp/tmp/13k4u1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') > points(x[,1]-mysum$resid) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/24xsy1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/3hf3v1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/4t2q21358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/5xcgx1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') > qqline(mysum$resid) > grid() > dev.off() null device 1 > (myerror <- as.ts(mysum$resid)) Time Series: Start = 1 End = 269 Frequency = 1 1 2 3 4 5 6 -36.84475830 -56.19058213 -17.91642551 9.13849596 -14.12612995 -2.20667733 7 8 9 10 11 12 -14.52882978 -15.28499619 30.79483619 2.73867194 -40.88604143 -16.71946194 13 14 15 16 17 18 10.38720005 -9.62588356 9.65902228 17.72059495 -1.32356631 -23.09586068 19 20 21 22 23 24 19.98472388 -0.67226647 -13.42304633 -11.62460046 10.36540161 -9.93627425 25 26 27 28 29 30 9.98767394 -3.98981002 16.50308103 21.31042548 -2.29038862 -6.99806483 31 32 33 34 35 36 -24.90971089 1.76239399 15.79831358 -10.36843728 22.41653909 -13.07017368 37 38 39 40 41 42 -6.01911478 18.56147553 18.78770092 33.39693416 10.46091461 -13.88774960 43 44 45 46 47 48 -6.89829447 17.06931690 47.11509998 20.03311946 9.58094036 2.92450155 49 50 51 52 53 54 10.36456370 4.06587396 -0.84517900 38.70522435 -11.85967017 17.68667019 55 56 57 58 59 60 12.45625758 -34.83138589 13.04739690 3.14032138 33.26791133 -19.77080257 61 62 63 64 65 66 8.41160367 4.04833736 17.18681524 12.30660672 -21.21742776 30.46493467 67 68 69 70 71 72 10.82765261 15.47587487 14.39254713 -27.24473494 10.75258745 17.06465201 73 74 75 76 77 78 20.44532974 18.66491773 17.14342587 -1.73019579 14.75416831 -5.65801144 79 80 81 82 83 84 17.09996454 4.34387453 24.37239382 -11.86570234 27.86783647 20.52638723 85 86 87 88 89 90 11.03274162 -5.27145952 -22.59333174 -17.75983606 9.78679761 -12.39571434 91 92 93 94 95 96 -0.55850891 22.38706333 -0.59887568 -24.54807729 0.36115157 -11.38549229 97 98 99 100 101 102 -17.73539368 -0.06468978 21.29499344 4.25486274 14.07657963 -15.61452592 103 104 105 106 107 108 24.58839788 -20.61567856 -76.72934467 -21.51471482 -1.54493615 21.46992446 109 110 111 112 113 114 31.87234680 -73.35776541 -73.17534842 -73.18241791 -42.09592615 -66.78144355 115 116 117 118 119 120 -17.22984120 -5.71123680 24.07961306 12.05271150 2.39439934 8.55983969 121 122 123 124 125 126 -30.04818311 18.38124953 18.25057590 -14.03414072 -23.42206581 5.09923575 127 128 129 130 131 132 -4.96554915 -12.53950967 9.27243426 42.47914560 -26.08941775 40.43896864 133 134 135 136 137 138 0.90423117 9.28287661 23.30227929 -1.91339238 4.32168197 -0.91914182 139 140 141 142 143 144 17.39674224 -16.34473571 17.26470919 9.96723481 10.19234911 29.31432816 145 146 147 148 149 150 -4.80661443 3.69949019 10.65442357 8.44272222 3.22069489 32.55701950 151 152 153 154 155 156 18.86981485 18.57079793 -26.18914059 14.77168036 -13.31687856 33.51248140 157 158 159 160 161 162 -1.77729347 -29.93220194 -6.22714707 22.67354586 -23.23892535 -0.68157019 163 164 165 166 167 168 15.37746379 13.00208041 -7.53862037 32.58948817 40.18330517 -14.81703308 169 170 171 172 173 174 32.97086061 -61.75610144 14.41022905 28.32501098 -36.37909686 -15.60103350 175 176 177 178 179 180 2.45731364 -13.32505892 45.47736854 -30.52694100 21.90838011 -2.98824973 181 182 183 184 185 186 26.62110702 13.47671632 30.03031344 5.84938438 33.25038743 10.69494205 187 188 189 190 191 192 15.98660362 -34.07412178 5.43790076 -14.36694115 5.31679967 25.49567912 193 194 195 196 197 198 18.80906332 27.37961790 32.10376787 -20.79919978 -33.93316206 0.65255484 199 200 201 202 203 204 14.16273303 -14.68253031 2.28579246 18.16915941 36.40413365 3.98585699 205 206 207 208 209 210 9.55190160 -33.09100824 20.02484920 46.08435499 -23.07683142 -31.07309844 211 212 213 214 215 216 5.29938277 -5.98194315 -46.41721452 -8.13925360 9.27687003 25.98168899 217 218 219 220 221 222 2.65227445 2.79197813 -39.09306167 -40.41225991 24.22476338 108.47963616 223 224 225 226 227 228 6.49540030 -38.54427470 -22.51174476 -22.36750193 50.73025886 16.02078199 229 230 231 232 233 234 28.99433457 -1.45753389 0.70879660 -16.64259605 44.59350340 -37.75925901 235 236 237 238 239 240 -25.08483885 23.55296014 -27.16561645 -43.21404130 35.26584123 -0.16388108 241 242 243 244 245 246 -13.98254702 -16.44679430 4.91105550 -19.51125322 39.78828005 -41.34916593 247 248 249 250 251 252 -15.25304146 -1.37863143 13.59201106 10.92879904 42.08181699 -21.34220185 253 254 255 256 257 258 -47.94142822 30.43275081 -45.86041874 -32.77415821 -35.09483687 -4.97227791 259 260 261 262 263 264 -13.24479607 -29.86492772 18.14917663 -35.76172157 -36.87210102 -4.17022260 265 266 267 268 269 -39.51897520 -9.64559245 -13.11545891 -17.69463329 -36.31116881 > postscript(file="/var/wessaorg/rcomp/tmp/6jryo1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > dum <- cbind(lag(myerror,k=1),myerror) > dum Time Series: Start = 0 End = 269 Frequency = 1 lag(myerror, k = 1) myerror 0 -36.84475830 NA 1 -56.19058213 -36.84475830 2 -17.91642551 -56.19058213 3 9.13849596 -17.91642551 4 -14.12612995 9.13849596 5 -2.20667733 -14.12612995 6 -14.52882978 -2.20667733 7 -15.28499619 -14.52882978 8 30.79483619 -15.28499619 9 2.73867194 30.79483619 10 -40.88604143 2.73867194 11 -16.71946194 -40.88604143 12 10.38720005 -16.71946194 13 -9.62588356 10.38720005 14 9.65902228 -9.62588356 15 17.72059495 9.65902228 16 -1.32356631 17.72059495 17 -23.09586068 -1.32356631 18 19.98472388 -23.09586068 19 -0.67226647 19.98472388 20 -13.42304633 -0.67226647 21 -11.62460046 -13.42304633 22 10.36540161 -11.62460046 23 -9.93627425 10.36540161 24 9.98767394 -9.93627425 25 -3.98981002 9.98767394 26 16.50308103 -3.98981002 27 21.31042548 16.50308103 28 -2.29038862 21.31042548 29 -6.99806483 -2.29038862 30 -24.90971089 -6.99806483 31 1.76239399 -24.90971089 32 15.79831358 1.76239399 33 -10.36843728 15.79831358 34 22.41653909 -10.36843728 35 -13.07017368 22.41653909 36 -6.01911478 -13.07017368 37 18.56147553 -6.01911478 38 18.78770092 18.56147553 39 33.39693416 18.78770092 40 10.46091461 33.39693416 41 -13.88774960 10.46091461 42 -6.89829447 -13.88774960 43 17.06931690 -6.89829447 44 47.11509998 17.06931690 45 20.03311946 47.11509998 46 9.58094036 20.03311946 47 2.92450155 9.58094036 48 10.36456370 2.92450155 49 4.06587396 10.36456370 50 -0.84517900 4.06587396 51 38.70522435 -0.84517900 52 -11.85967017 38.70522435 53 17.68667019 -11.85967017 54 12.45625758 17.68667019 55 -34.83138589 12.45625758 56 13.04739690 -34.83138589 57 3.14032138 13.04739690 58 33.26791133 3.14032138 59 -19.77080257 33.26791133 60 8.41160367 -19.77080257 61 4.04833736 8.41160367 62 17.18681524 4.04833736 63 12.30660672 17.18681524 64 -21.21742776 12.30660672 65 30.46493467 -21.21742776 66 10.82765261 30.46493467 67 15.47587487 10.82765261 68 14.39254713 15.47587487 69 -27.24473494 14.39254713 70 10.75258745 -27.24473494 71 17.06465201 10.75258745 72 20.44532974 17.06465201 73 18.66491773 20.44532974 74 17.14342587 18.66491773 75 -1.73019579 17.14342587 76 14.75416831 -1.73019579 77 -5.65801144 14.75416831 78 17.09996454 -5.65801144 79 4.34387453 17.09996454 80 24.37239382 4.34387453 81 -11.86570234 24.37239382 82 27.86783647 -11.86570234 83 20.52638723 27.86783647 84 11.03274162 20.52638723 85 -5.27145952 11.03274162 86 -22.59333174 -5.27145952 87 -17.75983606 -22.59333174 88 9.78679761 -17.75983606 89 -12.39571434 9.78679761 90 -0.55850891 -12.39571434 91 22.38706333 -0.55850891 92 -0.59887568 22.38706333 93 -24.54807729 -0.59887568 94 0.36115157 -24.54807729 95 -11.38549229 0.36115157 96 -17.73539368 -11.38549229 97 -0.06468978 -17.73539368 98 21.29499344 -0.06468978 99 4.25486274 21.29499344 100 14.07657963 4.25486274 101 -15.61452592 14.07657963 102 24.58839788 -15.61452592 103 -20.61567856 24.58839788 104 -76.72934467 -20.61567856 105 -21.51471482 -76.72934467 106 -1.54493615 -21.51471482 107 21.46992446 -1.54493615 108 31.87234680 21.46992446 109 -73.35776541 31.87234680 110 -73.17534842 -73.35776541 111 -73.18241791 -73.17534842 112 -42.09592615 -73.18241791 113 -66.78144355 -42.09592615 114 -17.22984120 -66.78144355 115 -5.71123680 -17.22984120 116 24.07961306 -5.71123680 117 12.05271150 24.07961306 118 2.39439934 12.05271150 119 8.55983969 2.39439934 120 -30.04818311 8.55983969 121 18.38124953 -30.04818311 122 18.25057590 18.38124953 123 -14.03414072 18.25057590 124 -23.42206581 -14.03414072 125 5.09923575 -23.42206581 126 -4.96554915 5.09923575 127 -12.53950967 -4.96554915 128 9.27243426 -12.53950967 129 42.47914560 9.27243426 130 -26.08941775 42.47914560 131 40.43896864 -26.08941775 132 0.90423117 40.43896864 133 9.28287661 0.90423117 134 23.30227929 9.28287661 135 -1.91339238 23.30227929 136 4.32168197 -1.91339238 137 -0.91914182 4.32168197 138 17.39674224 -0.91914182 139 -16.34473571 17.39674224 140 17.26470919 -16.34473571 141 9.96723481 17.26470919 142 10.19234911 9.96723481 143 29.31432816 10.19234911 144 -4.80661443 29.31432816 145 3.69949019 -4.80661443 146 10.65442357 3.69949019 147 8.44272222 10.65442357 148 3.22069489 8.44272222 149 32.55701950 3.22069489 150 18.86981485 32.55701950 151 18.57079793 18.86981485 152 -26.18914059 18.57079793 153 14.77168036 -26.18914059 154 -13.31687856 14.77168036 155 33.51248140 -13.31687856 156 -1.77729347 33.51248140 157 -29.93220194 -1.77729347 158 -6.22714707 -29.93220194 159 22.67354586 -6.22714707 160 -23.23892535 22.67354586 161 -0.68157019 -23.23892535 162 15.37746379 -0.68157019 163 13.00208041 15.37746379 164 -7.53862037 13.00208041 165 32.58948817 -7.53862037 166 40.18330517 32.58948817 167 -14.81703308 40.18330517 168 32.97086061 -14.81703308 169 -61.75610144 32.97086061 170 14.41022905 -61.75610144 171 28.32501098 14.41022905 172 -36.37909686 28.32501098 173 -15.60103350 -36.37909686 174 2.45731364 -15.60103350 175 -13.32505892 2.45731364 176 45.47736854 -13.32505892 177 -30.52694100 45.47736854 178 21.90838011 -30.52694100 179 -2.98824973 21.90838011 180 26.62110702 -2.98824973 181 13.47671632 26.62110702 182 30.03031344 13.47671632 183 5.84938438 30.03031344 184 33.25038743 5.84938438 185 10.69494205 33.25038743 186 15.98660362 10.69494205 187 -34.07412178 15.98660362 188 5.43790076 -34.07412178 189 -14.36694115 5.43790076 190 5.31679967 -14.36694115 191 25.49567912 5.31679967 192 18.80906332 25.49567912 193 27.37961790 18.80906332 194 32.10376787 27.37961790 195 -20.79919978 32.10376787 196 -33.93316206 -20.79919978 197 0.65255484 -33.93316206 198 14.16273303 0.65255484 199 -14.68253031 14.16273303 200 2.28579246 -14.68253031 201 18.16915941 2.28579246 202 36.40413365 18.16915941 203 3.98585699 36.40413365 204 9.55190160 3.98585699 205 -33.09100824 9.55190160 206 20.02484920 -33.09100824 207 46.08435499 20.02484920 208 -23.07683142 46.08435499 209 -31.07309844 -23.07683142 210 5.29938277 -31.07309844 211 -5.98194315 5.29938277 212 -46.41721452 -5.98194315 213 -8.13925360 -46.41721452 214 9.27687003 -8.13925360 215 25.98168899 9.27687003 216 2.65227445 25.98168899 217 2.79197813 2.65227445 218 -39.09306167 2.79197813 219 -40.41225991 -39.09306167 220 24.22476338 -40.41225991 221 108.47963616 24.22476338 222 6.49540030 108.47963616 223 -38.54427470 6.49540030 224 -22.51174476 -38.54427470 225 -22.36750193 -22.51174476 226 50.73025886 -22.36750193 227 16.02078199 50.73025886 228 28.99433457 16.02078199 229 -1.45753389 28.99433457 230 0.70879660 -1.45753389 231 -16.64259605 0.70879660 232 44.59350340 -16.64259605 233 -37.75925901 44.59350340 234 -25.08483885 -37.75925901 235 23.55296014 -25.08483885 236 -27.16561645 23.55296014 237 -43.21404130 -27.16561645 238 35.26584123 -43.21404130 239 -0.16388108 35.26584123 240 -13.98254702 -0.16388108 241 -16.44679430 -13.98254702 242 4.91105550 -16.44679430 243 -19.51125322 4.91105550 244 39.78828005 -19.51125322 245 -41.34916593 39.78828005 246 -15.25304146 -41.34916593 247 -1.37863143 -15.25304146 248 13.59201106 -1.37863143 249 10.92879904 13.59201106 250 42.08181699 10.92879904 251 -21.34220185 42.08181699 252 -47.94142822 -21.34220185 253 30.43275081 -47.94142822 254 -45.86041874 30.43275081 255 -32.77415821 -45.86041874 256 -35.09483687 -32.77415821 257 -4.97227791 -35.09483687 258 -13.24479607 -4.97227791 259 -29.86492772 -13.24479607 260 18.14917663 -29.86492772 261 -35.76172157 18.14917663 262 -36.87210102 -35.76172157 263 -4.17022260 -36.87210102 264 -39.51897520 -4.17022260 265 -9.64559245 -39.51897520 266 -13.11545891 -9.64559245 267 -17.69463329 -13.11545891 268 -36.31116881 -17.69463329 269 NA -36.31116881 > dum1 <- dum[2:length(myerror),] > dum1 lag(myerror, k = 1) myerror [1,] -56.19058213 -36.84475830 [2,] -17.91642551 -56.19058213 [3,] 9.13849596 -17.91642551 [4,] -14.12612995 9.13849596 [5,] -2.20667733 -14.12612995 [6,] -14.52882978 -2.20667733 [7,] -15.28499619 -14.52882978 [8,] 30.79483619 -15.28499619 [9,] 2.73867194 30.79483619 [10,] -40.88604143 2.73867194 [11,] -16.71946194 -40.88604143 [12,] 10.38720005 -16.71946194 [13,] -9.62588356 10.38720005 [14,] 9.65902228 -9.62588356 [15,] 17.72059495 9.65902228 [16,] -1.32356631 17.72059495 [17,] -23.09586068 -1.32356631 [18,] 19.98472388 -23.09586068 [19,] -0.67226647 19.98472388 [20,] -13.42304633 -0.67226647 [21,] -11.62460046 -13.42304633 [22,] 10.36540161 -11.62460046 [23,] -9.93627425 10.36540161 [24,] 9.98767394 -9.93627425 [25,] -3.98981002 9.98767394 [26,] 16.50308103 -3.98981002 [27,] 21.31042548 16.50308103 [28,] -2.29038862 21.31042548 [29,] -6.99806483 -2.29038862 [30,] -24.90971089 -6.99806483 [31,] 1.76239399 -24.90971089 [32,] 15.79831358 1.76239399 [33,] -10.36843728 15.79831358 [34,] 22.41653909 -10.36843728 [35,] -13.07017368 22.41653909 [36,] -6.01911478 -13.07017368 [37,] 18.56147553 -6.01911478 [38,] 18.78770092 18.56147553 [39,] 33.39693416 18.78770092 [40,] 10.46091461 33.39693416 [41,] -13.88774960 10.46091461 [42,] -6.89829447 -13.88774960 [43,] 17.06931690 -6.89829447 [44,] 47.11509998 17.06931690 [45,] 20.03311946 47.11509998 [46,] 9.58094036 20.03311946 [47,] 2.92450155 9.58094036 [48,] 10.36456370 2.92450155 [49,] 4.06587396 10.36456370 [50,] -0.84517900 4.06587396 [51,] 38.70522435 -0.84517900 [52,] -11.85967017 38.70522435 [53,] 17.68667019 -11.85967017 [54,] 12.45625758 17.68667019 [55,] -34.83138589 12.45625758 [56,] 13.04739690 -34.83138589 [57,] 3.14032138 13.04739690 [58,] 33.26791133 3.14032138 [59,] -19.77080257 33.26791133 [60,] 8.41160367 -19.77080257 [61,] 4.04833736 8.41160367 [62,] 17.18681524 4.04833736 [63,] 12.30660672 17.18681524 [64,] -21.21742776 12.30660672 [65,] 30.46493467 -21.21742776 [66,] 10.82765261 30.46493467 [67,] 15.47587487 10.82765261 [68,] 14.39254713 15.47587487 [69,] -27.24473494 14.39254713 [70,] 10.75258745 -27.24473494 [71,] 17.06465201 10.75258745 [72,] 20.44532974 17.06465201 [73,] 18.66491773 20.44532974 [74,] 17.14342587 18.66491773 [75,] -1.73019579 17.14342587 [76,] 14.75416831 -1.73019579 [77,] -5.65801144 14.75416831 [78,] 17.09996454 -5.65801144 [79,] 4.34387453 17.09996454 [80,] 24.37239382 4.34387453 [81,] -11.86570234 24.37239382 [82,] 27.86783647 -11.86570234 [83,] 20.52638723 27.86783647 [84,] 11.03274162 20.52638723 [85,] -5.27145952 11.03274162 [86,] -22.59333174 -5.27145952 [87,] -17.75983606 -22.59333174 [88,] 9.78679761 -17.75983606 [89,] -12.39571434 9.78679761 [90,] -0.55850891 -12.39571434 [91,] 22.38706333 -0.55850891 [92,] -0.59887568 22.38706333 [93,] -24.54807729 -0.59887568 [94,] 0.36115157 -24.54807729 [95,] -11.38549229 0.36115157 [96,] -17.73539368 -11.38549229 [97,] -0.06468978 -17.73539368 [98,] 21.29499344 -0.06468978 [99,] 4.25486274 21.29499344 [100,] 14.07657963 4.25486274 [101,] -15.61452592 14.07657963 [102,] 24.58839788 -15.61452592 [103,] -20.61567856 24.58839788 [104,] -76.72934467 -20.61567856 [105,] -21.51471482 -76.72934467 [106,] -1.54493615 -21.51471482 [107,] 21.46992446 -1.54493615 [108,] 31.87234680 21.46992446 [109,] -73.35776541 31.87234680 [110,] -73.17534842 -73.35776541 [111,] -73.18241791 -73.17534842 [112,] -42.09592615 -73.18241791 [113,] -66.78144355 -42.09592615 [114,] -17.22984120 -66.78144355 [115,] -5.71123680 -17.22984120 [116,] 24.07961306 -5.71123680 [117,] 12.05271150 24.07961306 [118,] 2.39439934 12.05271150 [119,] 8.55983969 2.39439934 [120,] -30.04818311 8.55983969 [121,] 18.38124953 -30.04818311 [122,] 18.25057590 18.38124953 [123,] -14.03414072 18.25057590 [124,] -23.42206581 -14.03414072 [125,] 5.09923575 -23.42206581 [126,] -4.96554915 5.09923575 [127,] -12.53950967 -4.96554915 [128,] 9.27243426 -12.53950967 [129,] 42.47914560 9.27243426 [130,] -26.08941775 42.47914560 [131,] 40.43896864 -26.08941775 [132,] 0.90423117 40.43896864 [133,] 9.28287661 0.90423117 [134,] 23.30227929 9.28287661 [135,] -1.91339238 23.30227929 [136,] 4.32168197 -1.91339238 [137,] -0.91914182 4.32168197 [138,] 17.39674224 -0.91914182 [139,] -16.34473571 17.39674224 [140,] 17.26470919 -16.34473571 [141,] 9.96723481 17.26470919 [142,] 10.19234911 9.96723481 [143,] 29.31432816 10.19234911 [144,] -4.80661443 29.31432816 [145,] 3.69949019 -4.80661443 [146,] 10.65442357 3.69949019 [147,] 8.44272222 10.65442357 [148,] 3.22069489 8.44272222 [149,] 32.55701950 3.22069489 [150,] 18.86981485 32.55701950 [151,] 18.57079793 18.86981485 [152,] -26.18914059 18.57079793 [153,] 14.77168036 -26.18914059 [154,] -13.31687856 14.77168036 [155,] 33.51248140 -13.31687856 [156,] -1.77729347 33.51248140 [157,] -29.93220194 -1.77729347 [158,] -6.22714707 -29.93220194 [159,] 22.67354586 -6.22714707 [160,] -23.23892535 22.67354586 [161,] -0.68157019 -23.23892535 [162,] 15.37746379 -0.68157019 [163,] 13.00208041 15.37746379 [164,] -7.53862037 13.00208041 [165,] 32.58948817 -7.53862037 [166,] 40.18330517 32.58948817 [167,] -14.81703308 40.18330517 [168,] 32.97086061 -14.81703308 [169,] -61.75610144 32.97086061 [170,] 14.41022905 -61.75610144 [171,] 28.32501098 14.41022905 [172,] -36.37909686 28.32501098 [173,] -15.60103350 -36.37909686 [174,] 2.45731364 -15.60103350 [175,] -13.32505892 2.45731364 [176,] 45.47736854 -13.32505892 [177,] -30.52694100 45.47736854 [178,] 21.90838011 -30.52694100 [179,] -2.98824973 21.90838011 [180,] 26.62110702 -2.98824973 [181,] 13.47671632 26.62110702 [182,] 30.03031344 13.47671632 [183,] 5.84938438 30.03031344 [184,] 33.25038743 5.84938438 [185,] 10.69494205 33.25038743 [186,] 15.98660362 10.69494205 [187,] -34.07412178 15.98660362 [188,] 5.43790076 -34.07412178 [189,] -14.36694115 5.43790076 [190,] 5.31679967 -14.36694115 [191,] 25.49567912 5.31679967 [192,] 18.80906332 25.49567912 [193,] 27.37961790 18.80906332 [194,] 32.10376787 27.37961790 [195,] -20.79919978 32.10376787 [196,] -33.93316206 -20.79919978 [197,] 0.65255484 -33.93316206 [198,] 14.16273303 0.65255484 [199,] -14.68253031 14.16273303 [200,] 2.28579246 -14.68253031 [201,] 18.16915941 2.28579246 [202,] 36.40413365 18.16915941 [203,] 3.98585699 36.40413365 [204,] 9.55190160 3.98585699 [205,] -33.09100824 9.55190160 [206,] 20.02484920 -33.09100824 [207,] 46.08435499 20.02484920 [208,] -23.07683142 46.08435499 [209,] -31.07309844 -23.07683142 [210,] 5.29938277 -31.07309844 [211,] -5.98194315 5.29938277 [212,] -46.41721452 -5.98194315 [213,] -8.13925360 -46.41721452 [214,] 9.27687003 -8.13925360 [215,] 25.98168899 9.27687003 [216,] 2.65227445 25.98168899 [217,] 2.79197813 2.65227445 [218,] -39.09306167 2.79197813 [219,] -40.41225991 -39.09306167 [220,] 24.22476338 -40.41225991 [221,] 108.47963616 24.22476338 [222,] 6.49540030 108.47963616 [223,] -38.54427470 6.49540030 [224,] -22.51174476 -38.54427470 [225,] -22.36750193 -22.51174476 [226,] 50.73025886 -22.36750193 [227,] 16.02078199 50.73025886 [228,] 28.99433457 16.02078199 [229,] -1.45753389 28.99433457 [230,] 0.70879660 -1.45753389 [231,] -16.64259605 0.70879660 [232,] 44.59350340 -16.64259605 [233,] -37.75925901 44.59350340 [234,] -25.08483885 -37.75925901 [235,] 23.55296014 -25.08483885 [236,] -27.16561645 23.55296014 [237,] -43.21404130 -27.16561645 [238,] 35.26584123 -43.21404130 [239,] -0.16388108 35.26584123 [240,] -13.98254702 -0.16388108 [241,] -16.44679430 -13.98254702 [242,] 4.91105550 -16.44679430 [243,] -19.51125322 4.91105550 [244,] 39.78828005 -19.51125322 [245,] -41.34916593 39.78828005 [246,] -15.25304146 -41.34916593 [247,] -1.37863143 -15.25304146 [248,] 13.59201106 -1.37863143 [249,] 10.92879904 13.59201106 [250,] 42.08181699 10.92879904 [251,] -21.34220185 42.08181699 [252,] -47.94142822 -21.34220185 [253,] 30.43275081 -47.94142822 [254,] -45.86041874 30.43275081 [255,] -32.77415821 -45.86041874 [256,] -35.09483687 -32.77415821 [257,] -4.97227791 -35.09483687 [258,] -13.24479607 -4.97227791 [259,] -29.86492772 -13.24479607 [260,] 18.14917663 -29.86492772 [261,] -35.76172157 18.14917663 [262,] -36.87210102 -35.76172157 [263,] -4.17022260 -36.87210102 [264,] -39.51897520 -4.17022260 [265,] -9.64559245 -39.51897520 [266,] -13.11545891 -9.64559245 [267,] -17.69463329 -13.11545891 [268,] -36.31116881 -17.69463329 > z <- as.data.frame(dum1) > z lag(myerror, k = 1) myerror 1 -56.19058213 -36.84475830 2 -17.91642551 -56.19058213 3 9.13849596 -17.91642551 4 -14.12612995 9.13849596 5 -2.20667733 -14.12612995 6 -14.52882978 -2.20667733 7 -15.28499619 -14.52882978 8 30.79483619 -15.28499619 9 2.73867194 30.79483619 10 -40.88604143 2.73867194 11 -16.71946194 -40.88604143 12 10.38720005 -16.71946194 13 -9.62588356 10.38720005 14 9.65902228 -9.62588356 15 17.72059495 9.65902228 16 -1.32356631 17.72059495 17 -23.09586068 -1.32356631 18 19.98472388 -23.09586068 19 -0.67226647 19.98472388 20 -13.42304633 -0.67226647 21 -11.62460046 -13.42304633 22 10.36540161 -11.62460046 23 -9.93627425 10.36540161 24 9.98767394 -9.93627425 25 -3.98981002 9.98767394 26 16.50308103 -3.98981002 27 21.31042548 16.50308103 28 -2.29038862 21.31042548 29 -6.99806483 -2.29038862 30 -24.90971089 -6.99806483 31 1.76239399 -24.90971089 32 15.79831358 1.76239399 33 -10.36843728 15.79831358 34 22.41653909 -10.36843728 35 -13.07017368 22.41653909 36 -6.01911478 -13.07017368 37 18.56147553 -6.01911478 38 18.78770092 18.56147553 39 33.39693416 18.78770092 40 10.46091461 33.39693416 41 -13.88774960 10.46091461 42 -6.89829447 -13.88774960 43 17.06931690 -6.89829447 44 47.11509998 17.06931690 45 20.03311946 47.11509998 46 9.58094036 20.03311946 47 2.92450155 9.58094036 48 10.36456370 2.92450155 49 4.06587396 10.36456370 50 -0.84517900 4.06587396 51 38.70522435 -0.84517900 52 -11.85967017 38.70522435 53 17.68667019 -11.85967017 54 12.45625758 17.68667019 55 -34.83138589 12.45625758 56 13.04739690 -34.83138589 57 3.14032138 13.04739690 58 33.26791133 3.14032138 59 -19.77080257 33.26791133 60 8.41160367 -19.77080257 61 4.04833736 8.41160367 62 17.18681524 4.04833736 63 12.30660672 17.18681524 64 -21.21742776 12.30660672 65 30.46493467 -21.21742776 66 10.82765261 30.46493467 67 15.47587487 10.82765261 68 14.39254713 15.47587487 69 -27.24473494 14.39254713 70 10.75258745 -27.24473494 71 17.06465201 10.75258745 72 20.44532974 17.06465201 73 18.66491773 20.44532974 74 17.14342587 18.66491773 75 -1.73019579 17.14342587 76 14.75416831 -1.73019579 77 -5.65801144 14.75416831 78 17.09996454 -5.65801144 79 4.34387453 17.09996454 80 24.37239382 4.34387453 81 -11.86570234 24.37239382 82 27.86783647 -11.86570234 83 20.52638723 27.86783647 84 11.03274162 20.52638723 85 -5.27145952 11.03274162 86 -22.59333174 -5.27145952 87 -17.75983606 -22.59333174 88 9.78679761 -17.75983606 89 -12.39571434 9.78679761 90 -0.55850891 -12.39571434 91 22.38706333 -0.55850891 92 -0.59887568 22.38706333 93 -24.54807729 -0.59887568 94 0.36115157 -24.54807729 95 -11.38549229 0.36115157 96 -17.73539368 -11.38549229 97 -0.06468978 -17.73539368 98 21.29499344 -0.06468978 99 4.25486274 21.29499344 100 14.07657963 4.25486274 101 -15.61452592 14.07657963 102 24.58839788 -15.61452592 103 -20.61567856 24.58839788 104 -76.72934467 -20.61567856 105 -21.51471482 -76.72934467 106 -1.54493615 -21.51471482 107 21.46992446 -1.54493615 108 31.87234680 21.46992446 109 -73.35776541 31.87234680 110 -73.17534842 -73.35776541 111 -73.18241791 -73.17534842 112 -42.09592615 -73.18241791 113 -66.78144355 -42.09592615 114 -17.22984120 -66.78144355 115 -5.71123680 -17.22984120 116 24.07961306 -5.71123680 117 12.05271150 24.07961306 118 2.39439934 12.05271150 119 8.55983969 2.39439934 120 -30.04818311 8.55983969 121 18.38124953 -30.04818311 122 18.25057590 18.38124953 123 -14.03414072 18.25057590 124 -23.42206581 -14.03414072 125 5.09923575 -23.42206581 126 -4.96554915 5.09923575 127 -12.53950967 -4.96554915 128 9.27243426 -12.53950967 129 42.47914560 9.27243426 130 -26.08941775 42.47914560 131 40.43896864 -26.08941775 132 0.90423117 40.43896864 133 9.28287661 0.90423117 134 23.30227929 9.28287661 135 -1.91339238 23.30227929 136 4.32168197 -1.91339238 137 -0.91914182 4.32168197 138 17.39674224 -0.91914182 139 -16.34473571 17.39674224 140 17.26470919 -16.34473571 141 9.96723481 17.26470919 142 10.19234911 9.96723481 143 29.31432816 10.19234911 144 -4.80661443 29.31432816 145 3.69949019 -4.80661443 146 10.65442357 3.69949019 147 8.44272222 10.65442357 148 3.22069489 8.44272222 149 32.55701950 3.22069489 150 18.86981485 32.55701950 151 18.57079793 18.86981485 152 -26.18914059 18.57079793 153 14.77168036 -26.18914059 154 -13.31687856 14.77168036 155 33.51248140 -13.31687856 156 -1.77729347 33.51248140 157 -29.93220194 -1.77729347 158 -6.22714707 -29.93220194 159 22.67354586 -6.22714707 160 -23.23892535 22.67354586 161 -0.68157019 -23.23892535 162 15.37746379 -0.68157019 163 13.00208041 15.37746379 164 -7.53862037 13.00208041 165 32.58948817 -7.53862037 166 40.18330517 32.58948817 167 -14.81703308 40.18330517 168 32.97086061 -14.81703308 169 -61.75610144 32.97086061 170 14.41022905 -61.75610144 171 28.32501098 14.41022905 172 -36.37909686 28.32501098 173 -15.60103350 -36.37909686 174 2.45731364 -15.60103350 175 -13.32505892 2.45731364 176 45.47736854 -13.32505892 177 -30.52694100 45.47736854 178 21.90838011 -30.52694100 179 -2.98824973 21.90838011 180 26.62110702 -2.98824973 181 13.47671632 26.62110702 182 30.03031344 13.47671632 183 5.84938438 30.03031344 184 33.25038743 5.84938438 185 10.69494205 33.25038743 186 15.98660362 10.69494205 187 -34.07412178 15.98660362 188 5.43790076 -34.07412178 189 -14.36694115 5.43790076 190 5.31679967 -14.36694115 191 25.49567912 5.31679967 192 18.80906332 25.49567912 193 27.37961790 18.80906332 194 32.10376787 27.37961790 195 -20.79919978 32.10376787 196 -33.93316206 -20.79919978 197 0.65255484 -33.93316206 198 14.16273303 0.65255484 199 -14.68253031 14.16273303 200 2.28579246 -14.68253031 201 18.16915941 2.28579246 202 36.40413365 18.16915941 203 3.98585699 36.40413365 204 9.55190160 3.98585699 205 -33.09100824 9.55190160 206 20.02484920 -33.09100824 207 46.08435499 20.02484920 208 -23.07683142 46.08435499 209 -31.07309844 -23.07683142 210 5.29938277 -31.07309844 211 -5.98194315 5.29938277 212 -46.41721452 -5.98194315 213 -8.13925360 -46.41721452 214 9.27687003 -8.13925360 215 25.98168899 9.27687003 216 2.65227445 25.98168899 217 2.79197813 2.65227445 218 -39.09306167 2.79197813 219 -40.41225991 -39.09306167 220 24.22476338 -40.41225991 221 108.47963616 24.22476338 222 6.49540030 108.47963616 223 -38.54427470 6.49540030 224 -22.51174476 -38.54427470 225 -22.36750193 -22.51174476 226 50.73025886 -22.36750193 227 16.02078199 50.73025886 228 28.99433457 16.02078199 229 -1.45753389 28.99433457 230 0.70879660 -1.45753389 231 -16.64259605 0.70879660 232 44.59350340 -16.64259605 233 -37.75925901 44.59350340 234 -25.08483885 -37.75925901 235 23.55296014 -25.08483885 236 -27.16561645 23.55296014 237 -43.21404130 -27.16561645 238 35.26584123 -43.21404130 239 -0.16388108 35.26584123 240 -13.98254702 -0.16388108 241 -16.44679430 -13.98254702 242 4.91105550 -16.44679430 243 -19.51125322 4.91105550 244 39.78828005 -19.51125322 245 -41.34916593 39.78828005 246 -15.25304146 -41.34916593 247 -1.37863143 -15.25304146 248 13.59201106 -1.37863143 249 10.92879904 13.59201106 250 42.08181699 10.92879904 251 -21.34220185 42.08181699 252 -47.94142822 -21.34220185 253 30.43275081 -47.94142822 254 -45.86041874 30.43275081 255 -32.77415821 -45.86041874 256 -35.09483687 -32.77415821 257 -4.97227791 -35.09483687 258 -13.24479607 -4.97227791 259 -29.86492772 -13.24479607 260 18.14917663 -29.86492772 261 -35.76172157 18.14917663 262 -36.87210102 -35.76172157 263 -4.17022260 -36.87210102 264 -39.51897520 -4.17022260 265 -9.64559245 -39.51897520 266 -13.11545891 -9.64559245 267 -17.69463329 -13.11545891 268 -36.31116881 -17.69463329 > plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') > lines(lowess(z)) > abline(lm(z)) > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/7xoda1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/8dq6b1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') > grid() > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/9tjwd1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) > plot(mylm, las = 1, sub='Residual Diagnostics') > par(opar) > dev.off() null device 1 > if (n > n25) { + postscript(file="/var/wessaorg/rcomp/tmp/10y06h1358278485.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) + plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') + grid() + dev.off() + } null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) > a<-table.row.end(a) > myeq <- colnames(x)[1] > myeq <- paste(myeq, '[t] = ', sep='') > for (i in 1:k){ + if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') + myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') + if (rownames(mysum$coefficients)[i] != '(Intercept)') { + myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') + if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') + } + } > myeq <- paste(myeq, ' + e[t]') > a<-table.row.start(a) > a<-table.element(a, myeq) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/11rkox1358278485.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Variable',header=TRUE) > a<-table.element(a,'Parameter',header=TRUE) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE) > a<-table.element(a,'2-tail p-value',header=TRUE) > a<-table.element(a,'1-tail p-value',header=TRUE) > a<-table.row.end(a) > for (i in 1:k){ + a<-table.row.start(a) + a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) + a<-table.element(a,mysum$coefficients[i,1]) + a<-table.element(a, round(mysum$coefficients[i,2],6)) + a<-table.element(a, round(mysum$coefficients[i,3],4)) + a<-table.element(a, round(mysum$coefficients[i,4],6)) + a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/129x221358278485.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple R',1,TRUE) > a<-table.element(a, sqrt(mysum$r.squared)) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'R-squared',1,TRUE) > a<-table.element(a, mysum$r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Adjusted R-squared',1,TRUE) > a<-table.element(a, mysum$adj.r.squared) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (value)',1,TRUE) > a<-table.element(a, mysum$fstatistic[1]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) > a<-table.element(a, mysum$fstatistic[3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'p-value',1,TRUE) > a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Residual Standard Deviation',1,TRUE) > a<-table.element(a, mysum$sigma) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Sum Squared Residuals',1,TRUE) > a<-table.element(a, sum(myerror*myerror)) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/139m9j1358278485.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a, 'Time or Index', 1, TRUE) > a<-table.element(a, 'Actuals', 1, TRUE) > a<-table.element(a, 'Interpolation
Forecast', 1, TRUE) > a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE) > a<-table.row.end(a) > for (i in 1:n) { + a<-table.row.start(a) + a<-table.element(a,i, 1, TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,x[i]-mysum$resid[i]) + a<-table.element(a,mysum$resid[i]) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/14pgev1358278485.tab") > if (n > n25) { + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'p-values',header=TRUE) + a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'breakpoint index',header=TRUE) + a<-table.element(a,'greater',header=TRUE) + a<-table.element(a,'2-sided',header=TRUE) + a<-table.element(a,'less',header=TRUE) + a<-table.row.end(a) + for (mypoint in kp3:nmkm3) { + a<-table.row.start(a) + a<-table.element(a,mypoint,header=TRUE) + a<-table.element(a,gqarr[mypoint-kp3+1,1]) + a<-table.element(a,gqarr[mypoint-kp3+1,2]) + a<-table.element(a,gqarr[mypoint-kp3+1,3]) + a<-table.row.end(a) + } + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/15guyi1358278485.tab") + a<-table.start() + a<-table.row.start(a) + a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'Description',header=TRUE) + a<-table.element(a,'# significant tests',header=TRUE) + a<-table.element(a,'% significant tests',header=TRUE) + a<-table.element(a,'OK/NOK',header=TRUE) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'1% type I error level',header=TRUE) + a<-table.element(a,numsignificant1) + a<-table.element(a,numsignificant1/numgqtests) + if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'5% type I error level',header=TRUE) + a<-table.element(a,numsignificant5) + a<-table.element(a,numsignificant5/numgqtests) + if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.row.start(a) + a<-table.element(a,'10% type I error level',header=TRUE) + a<-table.element(a,numsignificant10) + a<-table.element(a,numsignificant10/numgqtests) + if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' + a<-table.element(a,dum) + a<-table.row.end(a) + a<-table.end(a) + table.save(a,file="/var/wessaorg/rcomp/tmp/16i2i91358278485.tab") + } > > try(system("convert tmp/13k4u1358278485.ps tmp/13k4u1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/24xsy1358278485.ps tmp/24xsy1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/3hf3v1358278485.ps tmp/3hf3v1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/4t2q21358278485.ps tmp/4t2q21358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/5xcgx1358278485.ps tmp/5xcgx1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/6jryo1358278485.ps tmp/6jryo1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/7xoda1358278485.ps tmp/7xoda1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/8dq6b1358278485.ps tmp/8dq6b1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/9tjwd1358278485.ps tmp/9tjwd1358278485.png",intern=TRUE)) character(0) > try(system("convert tmp/10y06h1358278485.ps tmp/10y06h1358278485.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 14.405 1.256 15.746