R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(1155168,1144638,1133976,1111920,1330188,1318626,1155168,1046484,1056978,1056978,1068672,1089696,1155168,1133976,1166694,1220472,1526400,1526400,1461096,1395624,1449402,1514838,1526400,1559118,1657302,1591836,1591836,1690020,1962198,1984254,1929480,1798572,1896726,1896726,1907256,1962198,2005446,2027502,2027502,2092938,2344086,2409390,2419884,2256426,2344086,2311368,2245902,2387334,2419884,2365110,2376672,2452638,2736510,2877744,2877744,2812440,2910492,2812440,2757528,2965434,2997984,2920992,3117198,3194196,3423126,3575052,3554034,3542334,3629994,3619332,3488592,3684768,3750240,3684768,3956946,4087854,4392612,4512858,4480272,4414800,4469610,4535046,4316646,4490766,4600518,4556238,4839942,4937958,5352606,5428566,5330544,5385324,5418042,5450760,5242854,5439066,5547744,5439066,5755650,5853708,6278808,6344280,6365304,6475020,6475020,6518268,6322056,6420246,6485550,6365304,6714474,6779916,7215582,7292580,7401258,7499448,7509942,7521504,7325298,7521504) > par1 = '12' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 120 > (np <- floor(n / par1)) [1] 10 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1155168 1155168 1657302 2005446 2419884 2997984 3750240 4600518 5547744 [2,] 1144638 1133976 1591836 2027502 2365110 2920992 3684768 4556238 5439066 [3,] 1133976 1166694 1591836 2027502 2376672 3117198 3956946 4839942 5755650 [4,] 1111920 1220472 1690020 2092938 2452638 3194196 4087854 4937958 5853708 [5,] 1330188 1526400 1962198 2344086 2736510 3423126 4392612 5352606 6278808 [6,] 1318626 1526400 1984254 2409390 2877744 3575052 4512858 5428566 6344280 [7,] 1155168 1461096 1929480 2419884 2877744 3554034 4480272 5330544 6365304 [8,] 1046484 1395624 1798572 2256426 2812440 3542334 4414800 5385324 6475020 [9,] 1056978 1449402 1896726 2344086 2910492 3629994 4469610 5418042 6475020 [10,] 1056978 1514838 1896726 2311368 2812440 3619332 4535046 5450760 6518268 [11,] 1068672 1526400 1907256 2245902 2757528 3488592 4316646 5242854 6322056 [12,] 1089696 1559118 1962198 2387334 2965434 3684768 4490766 5439066 6420246 [,10] [1,] 6485550 [2,] 6365304 [3,] 6714474 [4,] 6779916 [5,] 7215582 [6,] 7292580 [7,] 7401258 [8,] 7499448 [9,] 7509942 [10,] 7521504 [11,] 7325298 [12,] 7521504 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 1139041 1386299 1822367 2239322 2697053 3395634 4257702 5165202 6149598 [10] 7136030 > arr.sd [1] 95118.51 167264.21 149747.71 158622.61 226458.29 265993.43 307809.56 [8] 337627.33 388664.83 429348.06 > arr.range [1] 283704 425142 392418 414438 600324 763776 850278 894522 1079202 [10] 1156200 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean 6.514e+04 5.299e-02 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) 1.2107 0.7465 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean 1.718e+05 1.453e-01 > postscript(file="/var/fisher/rcomp/tmp/1i1bi1373033557.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/25fn31373033557.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/fisher/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/3td941373033557.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/46gek1373033557.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/5ae6a1373033557.tab") > > try(system("convert tmp/1i1bi1373033557.ps tmp/1i1bi1373033557.png",intern=TRUE)) character(0) > try(system("convert tmp/25fn31373033557.ps tmp/25fn31373033557.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.612 0.435 2.020