R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(122.27,124.69,147.56,120.03,136.01,138.16,122.87,112.22,137.35,139.08,139.64,121.12,132.37,130.69,149.41,130.72,139.14,146.55,137.35,122.73,138.97,154.73,143.4,123.88,140.25,142.39,143.81,153.58,144.71,153.84,151.3,121.92,153.05,149.29,118.81,109.19,103.68,106.94,114.43,107.87,103.14,117.02,112.44,95.85,123.86,121.83,121.95,120.34,113.32,117.31,141.69,130.35,127.28,148.1,131.21,120.37,146.91,144.04,141.77,132.15,142.04,149.77,172.31,150.24,163.23,155.92,146.96,134.51,152.83,150.54,150.98,138.82) > par1 = '12' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 72 > (np <- floor(n / par1)) [1] 6 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [1,] 122.27 132.37 140.25 103.68 113.32 142.04 [2,] 124.69 130.69 142.39 106.94 117.31 149.77 [3,] 147.56 149.41 143.81 114.43 141.69 172.31 [4,] 120.03 130.72 153.58 107.87 130.35 150.24 [5,] 136.01 139.14 144.71 103.14 127.28 163.23 [6,] 138.16 146.55 153.84 117.02 148.10 155.92 [7,] 122.87 137.35 151.30 112.44 131.21 146.96 [8,] 112.22 122.73 121.92 95.85 120.37 134.51 [9,] 137.35 138.97 153.05 123.86 146.91 152.83 [10,] 139.08 154.73 149.29 121.83 144.04 150.54 [11,] 139.64 143.40 118.81 121.95 141.77 150.98 [12,] 121.12 123.88 109.19 120.34 132.15 138.82 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 130.0833 137.4950 140.1783 112.4458 132.8750 150.6792 > arr.sd [1] 10.759960 9.920708 15.158287 8.974536 11.802481 10.221134 > arr.range [1] 35.34 32.00 44.65 28.01 34.78 37.80 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean 2.42844 0.06503 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) -1.5634 0.8091 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean -5.1869 0.3032 > postscript(file="/var/fisher/rcomp/tmp/164d61369639684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/fisher/rcomp/tmp/2eeeo1369639684.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/fisher/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/fisher/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/3vyep1369639684.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/4xc7l1369639684.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/fisher/rcomp/tmp/5p2kh1369639684.tab") > > try(system("convert tmp/164d61369639684.ps tmp/164d61369639684.png",intern=TRUE)) character(0) > try(system("convert tmp/2eeeo1369639684.ps tmp/2eeeo1369639684.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 1.309 0.292 1.580