R version 3.2.2 (2015-08-14) -- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(478,31,494,43,643,16,341,25,773,29,603,32,484,24,546,28,424,25,548,58,506,21,819,77,541,37,491,37,514,35,371,42,457,21,437,81,570,31,432,50,619,24,357,27,623,22,547,18,792,23,799,60,439,14,867,31,912,24,462,23,859,22,805,25,652,25,776,21,919,32,732,31,657,13,1419,21,989,46,821,27,1740,18,815,39,760,15,936,23,863,7,783,23,715,30,1504,35,1324,15,940,18),dim=c(2,50),dimnames=list(c('A','B'),1:50))
>  y <- array(NA,dim=c(2,50),dimnames=list(c('A','B'),1:50))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par6 = '0.0'
> par5 = 'unpaired'
> par4 = 'two.sided'
> par3 = '0.95'
> par2 = '2'
> par1 = '1'
> main = 'Two Samples'
> par6 <- '0.0'
> par5 <- 'unpaired'
> par4 <- 'two.sided'
> par3 <- '0.95'
> par2 <- '2'
> par1 <- '1'
> #'GNU S' R Code compiled by R2WASP v. 1.2.327 (Mon, 02 Nov 2015 12:05:11 +0000)
> #Author: root
> #To cite this work: Wessa P., 2015, Paired and Unpaired Two Samples Tests about the Mean (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_twosampletests_mean.wasp/
> #Source of accompanying publication: 
> #
> par1 <- as.numeric(par1) #column number of first sample
> par2 <- as.numeric(par2) #column number of second sample
> par3 <- as.numeric(par3) #confidence (= 1 - alpha)
> if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
> par6 <- as.numeric(par6) #H0
> z <- t(y)
> if (par1 == par2) stop('Please, select two different column numbers')
> if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
> if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
> if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
> if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
> if (par3 <= 0) stop('The confidence level should be larger than zero')
> if (par3 >= 1) stop('The confidence level should be smaller than zero')
> (r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
	Two Sample t-test
data:  z[, par1] and z[, par2]
t = 16.531, df = 98, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 605.4627 770.6573
sample estimates:
mean of x mean of y 
   717.96     29.90 
> (v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
	F test to compare two variances
data:  z[, par1] and z[, par2]
F = 394.39, num df = 49, denom df = 49, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 223.8080 694.9929
sample estimates:
ratio of variances 
          394.3919 
> (r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
	Welch Two Sample t-test
data:  z[, par1] and z[, par2]
t = 16.531, df = 49.248, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 604.4284 771.6916
sample estimates:
mean of x mean of y 
   717.96     29.90 
> (w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
	Wilcoxon rank sum test with continuity correction
data:  z[, par1] and z[, par2]
W = 2500, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
> (ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
	Two-sample Kolmogorov-Smirnov test
data:  z[, par1] and z[, par2]
D = 1, p-value < 2.2e-16
alternative hypothesis: two-sided
Warning message:
In ks.test(z[, par1], z[, par2], alternative = par4) :
  cannot compute exact p-value with ties
> m1 <- mean(z[,par1],na.rm=T)
> m2 <- mean(z[,par2],na.rm=T)
> mdiff <- m1 - m2
> newsam1 <- z[!is.na(z[,par1]),par1]
> newsam2 <- z[,par2]+mdiff
> newsam2 <- newsam2[!is.na(newsam2)]
> (ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
	Two-sample Kolmogorov-Smirnov test
data:  newsam1 and newsam2
D = 0.52, p-value = 2.688e-06
alternative hypothesis: two-sided
Warning message:
In ks.test(newsam1, newsam2, alternative = par4) :
  cannot compute exact p-value with ties
> mydf <- data.frame(cbind(z[,par1],z[,par2]))
> colnames(mydf) <- c('Variable 1','Variable 2')
> postscript(file="/var/wessaorg/rcomp/tmp/1iwku1449865125.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> boxplot(mydf, notch=TRUE, ylab='value',main=main)
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/2b3m21449865125.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(z[,par1],main='Normal QQplot - Variable 1')
> qqline(z[,par1])
> dev.off()
null device 
          1 
> postscript(file="/var/wessaorg/rcomp/tmp/31hku1449865125.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(z[,par2],main='Normal QQplot - Variable 2')
> qqline(z[,par2])
> dev.off()
null device 
          1 
> 
> #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/wessaorg/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
> a<-table.row.end(a)
> if(!paired){
+ a<-table.row.start(a)
+ a<-table.element(a,'Mean of Sample 1',header=TRUE)
+ a<-table.element(a,r.t$estimate[[1]])
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Mean of Sample 2',header=TRUE)
+ a<-table.element(a,r.t$estimate[[2]])
+ a<-table.row.end(a)
+ } else {
+ a<-table.row.start(a)
+ a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
+ a<-table.element(a,r.t$estimate)
+ a<-table.row.end(a)
+ }
> a<-table.row.start(a)
> a<-table.element(a,'t-stat',header=TRUE)
> a<-table.element(a,r.t$statistic[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'df',header=TRUE)
> a<-table.element(a,r.t$parameter[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'p-value',header=TRUE)
> a<-table.element(a,r.t$p.value)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'H0 value',header=TRUE)
> a<-table.element(a,r.t$null.value[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Alternative',header=TRUE)
> a<-table.element(a,r.t$alternative)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'CI Level',header=TRUE)
> a<-table.element(a,attr(r.t$conf.int,'conf.level'))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'CI',header=TRUE)
> a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'F-test to compare two variances',2,TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'F-stat',header=TRUE)
> a<-table.element(a,v.t$statistic[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'df',header=TRUE)
> a<-table.element(a,v.t$parameter[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'p-value',header=TRUE)
> a<-table.element(a,v.t$p.value)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'H0 value',header=TRUE)
> a<-table.element(a,v.t$null.value[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Alternative',header=TRUE)
> a<-table.element(a,v.t$alternative)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'CI Level',header=TRUE)
> a<-table.element(a,attr(v.t$conf.int,'conf.level'))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'CI',header=TRUE)
> a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/wessaorg/rcomp/tmp/42rt51449865125.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
> a<-table.row.end(a)
> if(!paired){
+ a<-table.row.start(a)
+ a<-table.element(a,'Mean of Sample 1',header=TRUE)
+ a<-table.element(a,r.w$estimate[[1]])
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Mean of Sample 2',header=TRUE)
+ a<-table.element(a,r.w$estimate[[2]])
+ a<-table.row.end(a)
+ } else {
+ a<-table.row.start(a)
+ a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
+ a<-table.element(a,r.w$estimate)
+ a<-table.row.end(a)
+ }
> a<-table.row.start(a)
> a<-table.element(a,'t-stat',header=TRUE)
> a<-table.element(a,r.w$statistic[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'df',header=TRUE)
> a<-table.element(a,r.w$parameter[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'p-value',header=TRUE)
> a<-table.element(a,r.w$p.value)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'H0 value',header=TRUE)
> a<-table.element(a,r.w$null.value[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Alternative',header=TRUE)
> a<-table.element(a,r.w$alternative)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'CI Level',header=TRUE)
> a<-table.element(a,attr(r.w$conf.int,'conf.level'))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'CI',header=TRUE)
> a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/wessaorg/rcomp/tmp/5z4yr1449865125.tab") 
> a<-table.start()
> a<-table.row.start(a)
> myWlabel <- 'Wilcoxon Signed-Rank Test'
> if (par5=='unpaired') myWlabel = 'Wilcoxon Rank-Sum Test (Mann–Whitney U test)'
> a<-table.element(a,paste(myWlabel,' with continuity correction (',par5,')',sep=''),2,TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'W',header=TRUE)
> a<-table.element(a,w.t$statistic[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'p-value',header=TRUE)
> a<-table.element(a,w.t$p.value)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'H0 value',header=TRUE)
> a<-table.element(a,w.t$null.value[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Alternative',header=TRUE)
> a<-table.element(a,w.t$alternative)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'KS Statistic',header=TRUE)
> a<-table.element(a,ks.t$statistic[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'p-value',header=TRUE)
> a<-table.element(a,ks.t$p.value)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'KS Statistic',header=TRUE)
> a<-table.element(a,ks1.t$statistic[[1]])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'p-value',header=TRUE)
> a<-table.element(a,ks1.t$p.value)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/wessaorg/rcomp/tmp/601e01449865125.tab") 
> 
> try(system("convert tmp/1iwku1449865125.ps tmp/1iwku1449865125.png",intern=TRUE))
character(0)
> try(system("convert tmp/2b3m21449865125.ps tmp/2b3m21449865125.png",intern=TRUE))
character(0)
> try(system("convert tmp/31hku1449865125.ps tmp/31hku1449865125.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  1.148   0.239   1.400