R version 3.0.2 (2013-09-25) -- "Frisbee Sailing" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(132,41,273,182,188,162,140,186,178,236,202,184,119,16,340,151,240,235,174,309,174,207,209,171,117,10,339,139,186,155,153,222,102,107,188,162,185,24,394,209,248,254,202,258,215,309,240,258,276,48,455,345,311,346,310,297,300,274,292,304,186,14,321,206,160,217,204,246,234,175,364,328,158,40,556,193,221,278,230,253,240,252,228,306,206,48,557,279,399,364,306,471,293,333,316,329,265,61,679,428,394,352,387,590,177,199,203,255,261,115) > par1 = '6' > par1 <- '6' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 110 > (np <- floor(n / par1)) [1] 18 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] 132 140 119 174 117 153 185 202 276 310 186 204 158 230 [2,] 41 186 16 309 10 222 24 258 48 297 14 246 40 253 [3,] 273 178 340 174 339 102 394 215 455 300 321 234 556 240 [4,] 182 236 151 207 139 107 209 309 345 274 206 175 193 252 [5,] 188 202 240 209 186 188 248 240 311 292 160 364 221 228 [6,] 162 184 235 171 155 162 254 258 346 304 217 328 278 306 [,15] [,16] [,17] [,18] [1,] 206 306 265 387 [2,] 48 471 61 590 [3,] 557 293 679 177 [4,] 279 333 428 199 [5,] 399 316 394 203 [6,] 364 329 352 255 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 163.0000 187.6667 183.5000 207.3333 157.6667 155.6667 219.0000 247.0000 [9] 296.8333 296.1667 184.0000 258.5000 241.0000 251.5000 308.8333 341.3333 [17] 363.1667 301.8333 > arr.sd [1] 76.06839 31.37940 112.79140 52.69029 107.23743 46.34940 119.97666 [8] 37.90514 135.87261 12.46462 99.82184 73.01986 173.54423 28.70366 [15] 174.50435 65.20941 202.96346 160.25781 > arr.range [1] 232 96 324 138 329 120 370 107 407 36 307 189 516 78 509 178 618 413 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean 15.2004 0.3293 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) 2.0005 0.4272 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean 52.8095 0.9204 > postscript(file="/var/wessaorg/rcomp/tmp/1jkp71432045912.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/27nko1432045912.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3qmfk1432045912.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/42w4t1432045912.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/5xga51432045912.tab") > > try(system("convert tmp/1jkp71432045912.ps tmp/1jkp71432045912.png",intern=TRUE)) character(0) > try(system("convert tmp/27nko1432045912.ps tmp/27nko1432045912.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.899 0.135 1.045