R version 3.2.2 (2015-08-14) -- "Fire Safety" Copyright (C) 2015 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(1.4718,1.4748,1.5527,1.5751,1.5557,1.5553,1.577,1.4975,1.4369,1.3322,1.2732,1.3449,1.3239,1.2785,1.305,1.319,1.365,1.4016,1.4088,1.4268,1.4562,1.4816,1.4914,1.4614,1.4272,1.3686,1.3569,1.3406,1.2565,1.2209,1.277,1.2894,1.3067,1.3898,1.3661,1.322,1.336,1.3649,1.3999,1.4442,1.4349,1.4388,1.4264,1.4343,1.377,1.3706,1.3556,1.3179,1.2905,1.3224,1.3201,1.3162,1.2789,1.2526,1.2288,1.24,1.2856,1.2974,1.2828,1.3119,1.3288,1.3359,1.2964,1.3026,1.2982,1.3189,1.308,1.331,1.3348,1.3635,1.3493,1.3704,1.361,1.3658,1.3823,1.3812,1.3732,1.3592,1.3539,1.3316,1.2901,1.2673,1.2472,1.2331) > par1 = '12' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 84 > (np <- floor(n / par1)) [1] 7 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 1.4718 1.3239 1.4272 1.3360 1.2905 1.3288 1.3610 [2,] 1.4748 1.2785 1.3686 1.3649 1.3224 1.3359 1.3658 [3,] 1.5527 1.3050 1.3569 1.3999 1.3201 1.2964 1.3823 [4,] 1.5751 1.3190 1.3406 1.4442 1.3162 1.3026 1.3812 [5,] 1.5557 1.3650 1.2565 1.4349 1.2789 1.2982 1.3732 [6,] 1.5553 1.4016 1.2209 1.4388 1.2526 1.3189 1.3592 [7,] 1.5770 1.4088 1.2770 1.4264 1.2288 1.3080 1.3539 [8,] 1.4975 1.4268 1.2894 1.4343 1.2400 1.3310 1.3316 [9,] 1.4369 1.4562 1.3067 1.3770 1.2856 1.3348 1.2901 [10,] 1.3322 1.4816 1.3898 1.3706 1.2974 1.3635 1.2673 [11,] 1.2732 1.4914 1.3661 1.3556 1.2828 1.3493 1.2472 [12,] 1.3449 1.4614 1.3220 1.3179 1.3119 1.3704 1.2331 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 1.470592 1.393267 1.326808 1.391708 1.285600 1.328150 1.328825 > arr.sd [1] 0.10409694 0.07358333 0.05946740 0.04385790 0.03130948 0.02457695 0.05447619 > arr.range [1] 0.3038 0.2129 0.2063 0.1263 0.0936 0.0740 0.1492 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean -0.4353 0.3610 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) -5.538 8.310 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean -1.199 1.003 > postscript(file="/var/wessaorg/rcomp/tmp/16lzz1447781070.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/2hs4z1447781070.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3pgbx1447781070.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/48xwi1447781070.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/50bf71447781070.tab") > > try(system("convert tmp/16lzz1447781070.ps tmp/16lzz1447781070.png",intern=TRUE)) character(0) > try(system("convert tmp/2hs4z1447781070.ps tmp/2hs4z1447781070.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.859 0.178 1.038