R version 3.2.2 (2015-08-14) -- "Fire Safety" Copyright (C) 2015 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(73.97,75.01,75.98,78.85,79.34,79.62,79.76,79.62,79.89,79.88,79.97,79.63,80.04,80.23,80.44,81.78,82.51,82.43,82.35,82.53,82.08,82.73,82.46,81.98,82.11,82.26,82.51,82.89,83.83,84.73,84.48,84.84,84.99,84.7,84.54,84.73,84.51,84.54,84.27,84.47,84.25,84.33,84.29,84.53,84.01,84.18,84.08,83.44,83.61,83.89,83.4,82.96,82.76,83.35,87.78,88.99,88.92,88.91,89.79,90.54,93.15,92.79,93.21,95.35,100.91,103.69,104.04,104.16,104.71,105.18,104.92,104.83,104.9,105.05,104.6,103.21,102.52,101.09,101.19,102.34,102.62,102.47,101.82,101.86,101.54,101.98,101.23,100.4,99.94,99.94,100,98.8,99.07,99.46,99.18,98.47,97.12,96.91,96.09,97.17,96.8,97.13,99.9,100.56,100.84,99.81,100.44,100.07) > par1 = '12' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 108 > (np <- floor(n / par1)) [1] 9 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 73.97 80.04 82.11 84.51 83.61 93.15 104.90 101.54 97.12 [2,] 75.01 80.23 82.26 84.54 83.89 92.79 105.05 101.98 96.91 [3,] 75.98 80.44 82.51 84.27 83.40 93.21 104.60 101.23 96.09 [4,] 78.85 81.78 82.89 84.47 82.96 95.35 103.21 100.40 97.17 [5,] 79.34 82.51 83.83 84.25 82.76 100.91 102.52 99.94 96.80 [6,] 79.62 82.43 84.73 84.33 83.35 103.69 101.09 99.94 97.13 [7,] 79.76 82.35 84.48 84.29 87.78 104.04 101.19 100.00 99.90 [8,] 79.62 82.53 84.84 84.53 88.99 104.16 102.34 98.80 100.56 [9,] 79.89 82.08 84.99 84.01 88.92 104.71 102.62 99.07 100.84 [10,] 79.88 82.73 84.70 84.18 88.91 105.18 102.47 99.46 99.81 [11,] 79.97 82.46 84.54 84.08 89.79 104.92 101.82 99.18 100.44 [12,] 79.63 81.98 84.73 83.44 90.54 104.83 101.86 98.47 100.07 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 78.46000 81.79667 83.88417 84.24167 86.24167 100.57833 102.80583 [8] 100.00083 98.57000 > arr.sd [1] 2.1580926 0.9797990 1.1153186 0.3065299 3.1197868 5.2849939 1.3708555 [8] 1.1111784 1.8176258 > arr.range [1] 6.00 2.69 2.88 1.10 7.78 12.39 3.96 3.51 4.75 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean -2.34383 0.04697 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) -9.780 2.258 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean -4.9596 0.1098 > postscript(file="/var/wessaorg/rcomp/tmp/1gnpx1448223821.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/2hqc81448223821.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/33sgi1448223821.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4et411448223821.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/52abs1448223821.tab") > > try(system("convert tmp/1gnpx1448223821.ps tmp/1gnpx1448223821.png",intern=TRUE)) character(0) > try(system("convert tmp/2hqc81448223821.ps tmp/2hqc81448223821.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.835 0.175 1.012